如何“看”见不可见的恒星?

预测永远无法被观察到的天体的存在性——这有意义吗?也许就在人们终于接受了光是一种“波”而非“粒子”时,拉普拉斯的想法改变了。也许他只不过是对此失去了兴趣。因为在《宇宙体系论》再版时,他删掉了有关暗星的论述。而且,在这本书后来的多次再版中,甚至直至拉普拉斯于1827年去世,再也没有涉及过这个问题。

相比之下,米歇尔1784年发表的那篇论文展现出伟大的独创性。在此文中,米歇尔建议用一个聪明的方法来“看”这种不可见的恒星。他指出,如果一颗暗星围绕着一颗亮星运动,那么其作用于亮星的引力会在亮星的运动轨迹中显现出来。换句话说,由于暗星的拖拽,亮星会随着时间的推移在天空中来回轻摇——这正是如今的天文学家们追踪黑洞的手段之一。

尽管米歇尔和拉普拉斯已经走在了时代的前列,思考了当时的物理学无法给出答案的一些问题,但他们尚未意识到,超大恒星的密度比他们想象的低得多。他们也未曾考虑到,一颗体积更小,密度却非常大的恒星,也同样可能不可见。如果一颗普通的恒星不知何故被压缩进较小的体积内,光逃离其表面所需的速度会明显增加。但那个时代的天文学家们下意识地认为所有星体与太阳和地球的密度都一样。还会有什么东西会比地球上发现的物质密度更大呢?在18世纪晚期,这点仍是不可想象的。

米歇尔和拉普拉斯的工作都基于尚不能为大众所接受的万有引力定律和错误的光理论。他们不知道,光在真空里的速度从不减缓。证明此类暗星的存在需要更先进的光理论、引力理论以及物质理论。现代意义上的黑洞并非米歇尔和拉普拉斯认为的巨大而黑暗的恒星,而是时空中存在的真正的“洞”——这个概念要等到20世纪最具创造性的自然哲学家阿尔伯特·爱因斯坦方才出现,不过,已经迟到了一个世纪。


(1) 指物体或粒子的作用强度随距离的平方而线性衰减,即作用力与距离平方成反比关系。