- 黑洞简史
- (美)玛西亚·芭楚莎
- 862字
- 2021-04-22 15:13:14
米歇尔设想的极限情形
米歇尔认为,研究恒星的新方法涉及光的速度。米歇尔指出,如果天文学家密切监测双星系统中两颗恒星在数年之间围绕着彼此的运动,就可以计算出恒星的质量。这是对牛顿的万有引力定律最基本的应用。只要测量出轨道的宽度和两颗恒星彼此绕着轨道运行的时间,就可以估算出恒星的质量。如果一颗恒星的引力影响另外一颗恒星的运动,那么这种引力应该也会影响到光。在那个时代,光被认为是由大量云集的微粒——光子组成的,这主要是因为牛顿全力支持这个观点,而他的意见往往为大家所推崇。
现在假设这些微粒游离了恒星,进入了太空。米歇尔认为,引力会吸引这些微粒。恒星越大,其抓住光的引力也就越强,从而减缓了光的速度。正如他的论文题目所宣称的那样:“(恒星的)光速有减缓的现象。”测量一束星光进入望远镜的速度,你就获得了“称”出恒星质量的一种方法。
那么,这正是黑洞存在的可能性之来源:在米歇尔设想的极限情形——当恒星的质量大到一定程度时,“所有的光都会被恒星的引力拖拽回去”。这就像是从喷泉喷射出的水花,达到最大高度后,又回落到水池中去。如果恒星辐射的所有光粒子皆无法继续向外逃逸,恒星将是永远看不见的——在天空中,它只是一个黑暗的斑点。根据米歇尔的计算,一颗与太阳密度相同而直径为太阳500倍的恒星,就会转变为黑洞。如果将这颗恒星放置在太阳系中,它那巨大的星体将延伸至火星的轨道范围内。
1796年,正值法国大革命期间,法国数学家皮埃尔·西蒙·拉普拉斯也独立得出了与米歇尔类似的结论。在他著名的《宇宙体系论》(Exposition du système du monde)中,简明扼要地提及了这些“暗星”或“隐星”。这本书本质上是那个时代的宇宙论手册。“与地球密度相同,但直径比太阳大250倍的发光恒星,”他写道,“由于它强大的引力,不会允许其发出的任何光线到达我们这里。因此,宇宙中最大的发光体或许是不可见的。”在一个固执的同僚——天文学家冯·扎克男爵的恳求下,3年以后,拉普拉斯抛出严谨的数学证明支持他最初较为粗线条的表述。拉普拉斯对暗星直径的估计不同于米歇尔,因为他认为,像太阳这样的发光恒星密度更大。