- 人工智能安全(精装版)
- 陈左宁主编
- 2808字
- 2024-12-31 21:04:51
参考文献
[1]中国信息通信研究院安全研究所.人工智能安全白皮书(2018年)[R/OL].(2018-09-18)[2021-08-17].
[2]方滨兴.人工智能安全[M].北京:电子工业出版社,2020.
[3]清华大学人工智能研究院,清华—中国工程院知识智能联合研究中心,中国人工智能学会.人工智能发展报告2011—2020[R/OL].(2021-06-08)[2021-10-06].
[4]中国电子信息产业发展研究院(赛迪研究院),人工智能产业创新联盟.人工智能实践录[M].北京:人民邮电出版社,2020.
[5]《人工智能读本》编写组.人工智能读本[M].北京:人民出版社,2019.
[6]图灵人工智能.方滨兴院士:人工智能安全之我见[EB/OL].(2020-06-15)[2022-03-20].
[7]WU F,LU C,ZHU M,et al.Towards a new generation of artificial intelligence in China[J].Nat Mach Intell,2020,2:312-316.
[8]潘云鹤.人工智能2.0与教育的发展[J].中国远程教育,2018(5):5-8,44.
[9]RICHARD.人工智能教育(包括智适应机器学习模型)存在的风险[EB/OL].(2021-03-18)[2022-03-20].
[10]潘云鹤.经济向智能化转型的若干模式[N].中国信息化周报,2019-05-20.
[11]中国信息通信研究院安全研究所.人工智能安全框架(2020年)[R/OL].(2020-12-09)[2021-08-17].
[12]企鹅号-霍尔斯医疗.人工智能在医疗领域的应用风险很大[EB/OL].(2019-06-13)[2022-01-23].
[13]盘冠员.人工智能发展应用中的安全风险及应对策略[J].中国国情国力,2019(2):65-67.
[14]信息安全与通信保密杂志社.美国军事人工智能发展及其安全问题的思考[EB/OL].(2021-11-17)[2022-01-20].
[15]黄乐平,赵悦媛,余熠.科技行业:俄乌战争中的高科技[EB/OL].(2022-03-25)[2022-04-01].
[16]华为技术有限公司.AI安全白皮书[R/OL].(2019-09-19)[2022-03-29].
[17]ION S,DAWN S,RALUCA A P,et al.A Berkeley View of Systems Challenges for AI[J].arXiv:1712.05855,2017.
[18]AMODEI D,OLAH C,STEINHARDT J,et al.Concrete Problems in AI Safety[J].arXiv:1606.06565,2016.
[19]NAVEEN A,AJMAL M.Threat of Adversarial Attacks on Deep Learning in Computer Vision:A Survey[J].IEEE ACCESS,2018,6:14410-14430.
[20]NICHOLAS C,DAVID W.Towards Evaluating the Robustness of Neural Networks[J].IEEE Symposium on Security and Privacy,2017:39-57.
[21]IEEE.Ethically Aligned Design:A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems,First Edition[S].The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems,2019.
[22]KENG S,WEIYU W.Artificial Intelligence(AI)Ethics:Ethics of AI and Ethical AI[J].Journal of Database Management,2020,31(2):74-87.
[23]EMANUELLE B,JUDY G,SVEN K,et al.Ethical Considerations in Artificial Intelligence Courses[J].AI Magazine,2017,38(2):22-34.
[24]国家新一代人工智能治理专业委员会.新一代人工智能伦理规范[S/OL].(2021-09-25)[2022-04-21].
[25]谭铁牛.人工智能的创新发展与社会影响[EB/OL].(2018-10-29)[2021-11-21].
[26]朱敏,纪雯雯,高春雷,等.人工智能与劳动力市场变革:机遇和挑战[J].教育经济评论,2018,3(2):23-35.
[27]陈明真.人工智能就业影响及研究进展[J].中国经贸导刊(中),2020,971(6):183-180.
[28]MARCIN S.Economic impacts of artificial intelligence(AI)[J].European Parliamentary Research Service,2019.
[29]HENRY K,ERIC S,DANIEL H.The Metamorphorsis[J].The Atlantic,2019.
[30]GREG A,TANIEL C.Artificial Intelligence and National Security[J].Belfer Center for Science and International Affairs,2017.
[31]ROMAN V.Artificial Intelligence Safety and Security[M].Boca Raton:CRC Press,2019.
[32]LINARDATOS P,PAPASTEFANOPOULOS V,KOTSIANTIS S.Explainable AI:A Review of Machine Learning Interpretability Methods[J].Entropy,2021,23:18.
[33]ALEJANDRO B A,NATALIA D R,JAVIER D S,et al.Explainable Artificial Intelligence(XAI):Concepts,Taxonomies,Opportunities and Challenges Toward Responsible AI[J].Information Fusion,2020,58:82-115.
[34]CYNTHIA R.Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J].Nature Machine Intelligence,2019,1:206-215.
[35]STUART R.Human Compatible:Artificial Intelligence and the Problem of Control[J].Penguin Random House,2019.
[36]ROMAN V.Yampolskiy(2014):Utility function security in artificially intelligent agents[J].Experimental & Theoretical Artificial Intelligence,2014.
[37]TOM E,MARCUS H.Avoiding Wireheading with Value Reinforcement Learning[J].Artificial General Intelligence,2016.
[38]CHRISTIAN S,WOJCIECH Z,ILYA S,et al.Intriguing properties of neural networks[J].arXiv:1312.6199v4,2014.
[39]SEYED M M D,ALHUSSEIN F,PASCAL F.DeepFool:A simple and accurate method to fool deep neural networks[C].2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:282.
[40]李欣姣,吴国伟,姚琳,等.机器学习安全攻击与防御机制研究进展和挑战[J].软件学报,2021,32(2):18.
[41]ANH N,JASON Y,JEFF C.Deep Neural Networks are Easily Fooled:High Confidence Predictions for Unrecognizable Images[C].2015 IEEE Conference on Computer Vision and Pattern Recognition,2015.
[42]SEYED M M D,ALHUSSEIN F,OMAR F,et al.Universal Adversarial Perturbations[C].2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:1765-1773.
[43]纪守领,杜天宇,李进锋,等.机器学习模型安全与隐私研究综述[J].软件学报,2021,32(1):27.
[44]GOODFELLOW I J,JONATHON S,CHRISTIAN S.Explaining and Harnessing Adversarial Examples[J].arXiv:1412.6572,2015.
[45]ALEKSANDER M,ALEKSANDAR M,LUDWIG S.Towards Deep Learning Models Resistant to Adversarial Attacks[C].International Conference on Learning Representation,2018.
[46]RUIQI G,TIANLE C,HAOCHUAN L,et al.Convergence of Adversarial Training in Overparametrized Neural Networks[C].33rd Conference on Neural Information Processing Systems,2019:1-12.
[47]NICOLAS P,PATRICK M D,XI W,et al.Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks[C].2016 IEEE Symposium on Security and Privacy,2016:583-597.
[48]GU S X,LUCA R.Towards Deep Neural Network Architectures Robust to Adversarial Examples[J].arXiv:1412.5068,2015.
[49]李盼,赵文涛,刘强,等.机器学习安全性问题及其防御技术研究综述[J].计算机科学与探索,2018,12(2):171-1840.
[50]CHEN,X Y,LIU C,LI B,et al.Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning[J].arXiv:1712.05526,2017.
[51]BIGGIO B,CORONA I,MAIORCA D,et al.Evasion attacks against machine learning at test time[C].European conference on machine learning,2013:387-402.
[52]REZA S,MARCO S,CONGZHENG S,et al.Membership Inference Attacks Against Machine Learning Models[C].2017 IEEE Symposium on Security and Privacy,2017,41:22-26.
[53]CHEN D,YU N,ZHANG Y,et al.GAN-Leaks A Taxonomy of Membership Inference Attacks against Generative Models[C].ACM SIGSAC Conference on Computing and Communication Security,2020.
[54]360.360 AI研究院披露TensorFlow 24个漏洞[EB/OL].(2020-09-28)[2022-03-27].
[55]施文,王楷文,俞成浦,等.多无人系统协同中的人工智能安全探索[J].中国工程科学,2021,23(3):82-89.
[56]MELIS L,SONG C,CRISTOFARO E D,et al.Exploiting unintended feature leakage in collaborative learning[C].2019 IEEE Symposium on Security and Privacy,2019:691-706.
[57]WEI W,LIU L,LOPER M,et al.A framework for evaluating gradient leakage attacks in federated learning[J].arXiv:2004.10397,2020.
[58]YUAN X Y,MA X Y,ZHANG L,et al.Beyond Class-Level Privacy Leakage:Breaking Record-Level Privacy in Federated Learning[C].IEEE Internet of Things Journal,2021:1-11.
[59]TRAMÈR F,ZHANG F,JUELS A,et al.Stealing Machine Learning Models via Prediction APIs[J].USENIX Security Symposium,2016.
[60]GU T,GAVITT B D,GARG S.Badnets:Identifying vulnerabilities in the machine learning model supply chain[C].NIPS MLSec Workshop,2017.
[61]MATTHEW J,A LINA O,BATTISTA B,et al.Manipulating Machine Learning:Poisoning Attacks and Countermeasures for Regression Learning[C].2018 IEEE Symposium on Security and Privacy,2018.
[62]HITAJ B,ATENIESE G,PEREZ CRUZ F.Deep models under the GAN:Information leakage from collaborative deep learning[C].Conference on Computer and Communications Security,2017:603-618.
[63]RUBEN T,RUBEN V R,JULIAN F,et al.DeepFakes and Beyond:A Survey of Face Manipulation and Fake Detection[J].Information Fusion,2020.
[64]SUWAJANAKORN S,SEITZ S M,SHLIZERMAN Z K.Synthesizing Obama:Learning Lip Sync from Audio[J].ACM Transactions on Graphics,2017,36(4):1-13.
[65]ASILOMAR.AI Principles[EB/OL].(2017-08-11)[2022-04-06].
[66]NANCY O.Asilomar AI Principles:A framework for human value alignment[EB/OL].(2017-02-06)[2021-12-21].
[67]AMIT K,ANJANI K.AI and ML in Cybersecurity Risk Management[EB/OL].(2020-12-01)[2022-02-02].
[68]HENRY K.How the Enlightenment Ends[J].The Atlantic,2018.
[69]RITHESH K,JOSE S,KUNDAN K,et al.ObamaNet:Photo-realistic lip-sync from text[J].arXiv:1801.01442,2017.
[70]STUART R,DANIEL D,MAX T.Research Priorities for Robust and Beneficial Artificial Intelligence[J].AI MAGAZINE,2015:105-114.
[71]NASR M,SHOKRI R,HOUMANSADR A.Comprehensive privacy analysis of deep learning:Stand-alone and federated learning under passive and active white-box inference attacks[J].IEEE Symposium on Security and Privacy,2019:1-15.
[72]WEI W Q,LIU L,WU Y H,et al.Gradient-Leakage Resilient Federated Learning[C].2021 IEEE 41st International Conference on Distributed Computing Systems,2021.
[73]NICOLAS P,PATRICK M.Extending defensive distillation[J].arXiv:1705.05264,2017.
[74]JEREMY C,ELAN R,et al.Certified Adversarial Robustness via Randomized Smoothing[C].Proceedings of the 36th International Conference on Machine Learning,2019.
[75]MURDOCH W J,SINGH C,KUMBIER K,et al.Interpretable machine learning:definitions,methods,and applications[J].arXiv:1901.04592,2019.
[76]ACEMOGLU D,RESTREPO P.The wrong kind of AI? Artificial intelligence and the future of labour demand[J].Cambridge Journal of Regions,Economy and Society,2020,13(1):25-35.
[77]BARON B,MUSOLESI M.Interpretable machine learning for privacy-preserving pervasive systems[J].IEEE Pervasive Computing,2020,19(1):73-82.
[78]王亦菲,韩凯峰.数字经济时代人工智能伦理风险及治理体系研究[J].信息通信技术与政策,2021,47(2):32-36.
[79]中国信息通信研究院,中国人工智能产业发展联盟.人工智能治理白皮书[R/OL].(2022-09-04)[2022-12-01].
[80]杨婕.推动完善我国新一代人工智能伦理治理体系[J].信息安全与通信保密,2020(1):93-101.
[81]中国新一代人工智能发展战略研究院.全面融合发展中的中国人工智能科技产业[R].2021.