1.3.6 OT、DT、IT的融合与分工

在1.3.3节我们已经讨论了OT、DT、IT思维模式上的差别与互补关系。一个常见的讨论是工业大数据到底应该以哪类人为主。这个问题其实没有简单的答案,原因在于① 不同的待解决问题需要的核心技能不同;② 工业企业人的角色并没有严格区分,很多领域专家除OT角色外,还可能有一定的DT技能。因此,这里讨论三者协作效率的决定因素和手段。

首先,在工程化思路方面,OT、DT、IT人是类似的,他们的差异更多体现在技能和信息禀赋方面。在行业数据分析中,DT人通常也会尝试机理推演的路线,通过访谈或先验知识形成一些探索的假想,通过数据探索,获得更深层次的理解,以便与OT人高效沟通协同。

OT、DT、IT人不同的技能层次如图1-8所示,从下到上,分别给出OT、DT、IT的基础能力和深层次的能力。基础技能的跨领域学习或转移成本较小,而深层次技能的转移成本很高。因此,在工业大数据实施中,一方面需要建立共性的基础能力,避免过度分工带来不必要的沟通成本;另外,要通过技术手段或机制,在保持专业化分工的同时,以形式化或半形式化模式提高跨领域的沟通效率。

图1-8 OT、DT、IT人不同的技能层次

OT人有相对系统的领域认知体系,有良好的解读能力,有一定的研判经验。主要包括:① 控制策略、量测方法与数据解析方法、工况等现场实际信息的掌握,这些基础信息比基础原理具象,通常没有明确的数据记录提高分析的系统性和科学性;② 对数据异常和结果的业务研判力,以避免对大数据量的强依赖;③ 对实际案例的解读能力,相对于机器学习更简洁与体系化;④ 有探索方向,不完全依赖于数据,降低搜索空间,快速定位。很多OT也有一定的数据分析能力,因此,对一些算法技能要求不高的分析课题,OT人做更有效率,但也存在很多潜在提升点,OT人的数据分析手段与潜在提升点如表1-6所示。

对于有类似案例的分析课题,通常的方式是在既有案例上用新的数据进行测试和修改,通过复用来尽快形成解决当前问题的模型或数据应用。对于专家规则型的分析课题,专家规则可以被明确表达,通常方式是DT负责形式化和大规模验证,通过具体的反例辅助OT人不断精化规则,消除专家规则中的歧义性和不完备性。

表1-6 OT人的数据分析手段与潜在提升点

对领域背景比较深的分析课题,一种常见的协同模式是:OT负责解决个例化(具象化)的逻辑或思路,解决0到1的逻辑问题;DT解决逻辑的普适性,解决1到N的逻辑问题,IT解决自动化和物理部署问题。在这种情形下,OT需要易用的可视化探索与记录环境,以便将业务逻辑梳理得更清楚;DT需要灵活高效的模型研发与验证环境,负责形式化和大规模验证,负责算法或模型的性能与效率,尽量完成数据应用的初步设计与开发,平台后台解决数据访问、并行化计算和低代码开发问题。IT负责个性化的数据平台、应用个性化开发和日常运维。