- 现代决策树模型及其编程实践:从传统决策树到深度决策树
- 黄智濒编著
- 799字
- 2023-07-14 20:17:19
1.8 参考文献
[1]ALI, ABID M, HICKMAN P J, et al. The Application of Automatic Interaction Detection (AID) in Operational Research[J]. Operational Research Quarterly, 1975: 243-52.
[2]BELSON, WILLIAM A. Matching and Prediction on the Principle of Biological Classification[J].Journal of the Royal Statistical Society, 1959: 65-75.
[3]BREIMAN L, FRIEDMAN J, OLSHEN R, et al. Classification and Regression Tree[Z].1983.
[4]QUINLAN J R. Induction of decision trees[J]. Mach Learn, 1986: 81-106.
[5]QUINLAN J R. C4.5: Programs for Machine Learning[M]. Morgan Kaufmann Publishers, 1993.
[6]QUINLAN J R. C4.5. Source code[CP]. https://www.rulequest.com/Personal/.
[7]BASSEL, GEORGE W, GLAAB, et al. Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets[J/OL]. The Plant Cell, 2011, 23 (9): 3101-3116. DOI: 10.1105/tpc.111.088153. ISSN 1532-298X. PMC 3203449. PMID 21896882.
[8]BENI G, WANG J. Swarm Intelligence in Cellular Robotic Systems[M/OL]. Springer, 1993. DOI: 10.1007/978-3-642-58069-7_38. ISBN 978-3-642-63461-1.
[9]LOH W Y. Fifty years of classification and regression trees[J]. International Statistical Review, 2014, 82 (3): 329-348.
[10]HUNT E B, MARIN J, STONE P J. Experiments in induction[M]. Academic Press, 1966.
[11]HASI F, DE SMEDT J. VANTHIENEN J.Augmenting processes with decision intelligence: Principles for integrated modelling[J]. Decision Support Systems, 2018, 107: 1-12.
[12]KENNEDY J. Swarm intelligence: Handbook of nature-inspired and innovative computing[M]. Springer, 2006.
[13]BONABEAU E, THERAULAZ G, DORIGO M. Swarm intelligence[M]. Oxford, 1999.
[14]DEAR K. Artificial intelligence and decision-making[J]. The RUSI Journal, 2019, 164 (5-6): 18-25.
[15]PADIAN K. The Book of Trees: Visualizing Branches of Knowledge[J]. Nature, 2014, 511 (7510): 408-409.
[16]VERBOON A R. The medieval tree of Porphyry: An organic structure of logic[J]. International Medieval Research, 2014: 95-116.
[17]BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and regression trees[M].Routledge, 2017.
[18]CLARK K L, MCCABE F C, MITCHIE D. Expert systems in the micro electronic age[M].1979.
[19]LOH W Y. Fifty years of classification and regression trees[J]. International Statistical Review, 2014, 82 (3): 329-348.
[20]QUINLAN J R. C4. 5: programs for machine learning[M]. Elsevier, 2014.
[21]MUHAMMAD I, YAN Z. Supervised machine learning approaches: a survey[J]. ICTACT Journal on Soft Computing, 2015, 5 (3) .
[22]VAN ENGELEN J E, HOOS H H. A survey on semi-supervised learning[J]. Machine Learning, 2020, 109 (2): 373-440.
[23]GARCIA S, LUENGO J, SEZ J A, et al. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 25 (4): 734-750.
[24]BURKART N, HUBER M F. A survey on the explainability of supervised machine learning[J].Journal of Artificial Intelligence Research, 2021, 70: 245-317.
[25]CELEBI EMRE M, et al. Unsupervised learning algorithms[M]. Springer International Publishing, 2016.
[26]GLORENNEC P Y. Reinforcement learning: An overview, Proceedings European Symposium on Intelligent Techniques (ESIT-00) [C]. 2000: 14-15.
[27]LITTMAN M L, MOORE A W. Reinforcement learning: A survey[J]. Journal of artificial intelligence research, 1996, 4 (1): 237-285.
[28]ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34 (6): 26-38.
[29]NGUYEN D H, WIDROW B. Neural networks for self-learning control systems[J]. IEEE Control systems magazine, 1990, 10 (3): 18-23.
[30]袁非牛,章琳,史劲亭,等.自编码神经网络理论及应用综述[J].计算机学报,2019,42(1):203-230.
[31]何清,李宁,罗文娟,等.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,27(4):327-336.