- 从程序员到架构师:大数据量、缓存、高并发、微服务、多团队协同等核心场景实战
- 王伟杰编著
- 679字
- 2022-06-17 17:04:24
5.1 业务场景:如何以最小代价解决短期高频写请求
某公司策划了一场超低价预约大型线上活动,在某天9:00~9:15期间,用户可以前往详情页半价预约抢购一款热门商品。根据市场部门的策划方案,这次活动的运营目标是几十万左右的预约量。
为避免活动上线后出现问题,比如数据库被压垮、后台服务器支撑不住(这个倒是小问题,加几台服务器即可)等,项目组必须提前做好预案。这场活动中,领导要求在架构上不要做太大调整,毕竟是一个临时的活动。简单地说就是工期不能太长,修改影响范围不要太大。
项目组分析了一下可能的情况,其他都没问题,唯一没把握的就是数据库。
项目组通过如下逻辑做了一次简单的测算。
假设目标是15分钟完成100万的预约数据插入,并且不是在15分钟内平均插入的。按照以往的经验,有可能在1分钟内就完成90%的预约,也有可能在5分钟内完成80%的预约,这些难以预计。但是峰值流量预估值只能取高,不能取低。所以设计的目标是:用户1分钟内就完成90%的预约量,即90万预约。那么推算出目标的TPS(吞吐量)就是9万/60=1.5万。
原来预约就是个简单的功能,并没有做高并发设计。对它做了一次压力测试,结果最大的TPS是2200左右,与需求值差距较大。
项目组想过分表分库这个方案,不过代码改动的代价太大了,性价比不高。毕竟这次仅仅是临时性市场活动,而且活动运营目标是几十万的预约量,这点数据量采取分表分库的话,未免有些得不偿失。
项目最终采用的方案是不让预约的请求直接插入数据库,而是先存放到性能很高的缓冲地带,以此保证洪峰期间先冲击缓冲地带,之后再从缓冲地带异步、匀速地迁移数据到数据库中。
其实这个解决方案就是写缓存,这也是接下来要重点讲解的内容。