2.2 斜孔孔壁稳定性

2.2.1 孔壁稳定性概述

2.2.1.1 孔壁失稳形式与机制

孔壁失稳,从广义上讲包括脆性泥页岩和低强度砂岩孔壁的坍塌、塑性泥页岩孔壁的缩径和黏弹性变形,以及一些岩层在钻进泥浆压力作用下的破裂,即孔壁失稳一般表现为坍塌(扩径)、缩径、破裂等几种形式。孔壁坍塌是孔壁失稳最常见的形式,据有关资料统计,约有70%的孔壁失稳是孔壁坍塌或掉块;孔壁缩径常发生在易膨胀、易分散的泥页岩地层;孔壁破裂往往出现在裂缝或胶结差处,甚至无胶结物的易碎性岩层中。由于水合物多赋藏于海底半固结甚至未固结的泥砂层中,水深又较大,因此孔壁坍塌或破裂比起一般油气地层会更容易发生。

造成孔壁失稳的原因有很多,可归结为以下三种因素:

(1)力学因素。处于地层深处的岩石,受上覆岩层压力、水平方向的地应力和地层孔隙压力的作用,在井眼钻开前,地下岩层处于应力平衡状态,井眼钻开后,井内泥浆柱压力取代了所钻岩层提供的对孔壁的支撑,破坏了地层的原有应力平衡,引起井眼周围应力重新分布。当这种平衡不能重新建立时,地层将产生破坏。如果井内泥浆柱压力过低,就会使孔壁周围岩石所受应力强度超过岩石本身的强度而产生剪切破坏,引发孔壁坍塌;若钻进泥浆密度过高,则相应使孔壁发生张性破坏。

(2)化学因素。从钻开井眼开始,钻进泥浆在井下压力和温度条件下就会和地层发生相互作用:①离子交换;②由于化学势而产生水的运移渗透作用;③因毛管力作用产生水分渗析;④因压差使水沿孔壁微裂缝侵入。结果是泥页岩吸水膨胀产生水化应力,其作用程度和范围随时间而扩大,岩石将产生分散,或不分散但裂缝增多或扩展,减弱了强度,引起孔壁不稳定。

(3)工程因素。包括:钻进泥浆的密度、流变性及其他化学性质、钻进泥浆对孔壁的冲刷、井眼波动压力、井眼裸露的时间、钻柱对孔壁的刮拉及碰撞等。

钻进泥浆与地层岩石的化学作用影响了井眼周围岩石的力学性质,在孔壁周围岩石中引起水化应力,从而改变了井眼周围岩石中的应力状态。所以钻进泥浆化学作用导致的孔壁失稳可归结为力学因素。同样,工程因素也是由于孔壁受力所引发的,因此孔壁失稳实际是一个力学过程,其实质是孔壁岩石所受应力超过了其强度而诱发失稳破坏。

2.2.1.2 钻孔围岩应力状态的影响因素

孔壁稳定与否依据岩石破坏准则对钻孔围岩的应力状态进行判断。如果孔壁压力大于强度包络线,孔壁就会产生破坏。但是影响钻孔围岩应力状态和破坏准则的因素很多,使问题变得非常复杂。影响钻孔围岩应力状态的因素概括起来主要有下面几个方面:

(1)地质因素。地质因素是指原位地应力状态、孔隙压力、低温、地质构造特征等。

(2)岩石的物理力学性质。岩石的物理力学性质是指岩石的强度、变形特征、孔隙度、含水量、黏土含量、组成和压实情况等。

(3)钻进泥浆。钻进泥浆是指钻进泥浆的综合性质、化学组成、连续相的性质、内部相的组织和类型、与连续相有关的添加剂类型、泥浆体系的维护等。钻进泥浆对于泥页岩和泥质胶结的砂岩的物理力学性质的影响非常大。

(4)其他工程因素。其他工程因素主要包括开孔时间、裸眼长度、孔身结构参数(孔深、顶角、方位角)、压力激动和抽吸等。这些因素和参数之间相互作用、相互影响,使孔壁稳定问题变得非常复杂。

就目前的技术手段而言,要准确确定各个影响因素还有困难,主要由于下列原因:①直接观察孔壁的方法很少,很难确切了解孔内究竟发生了什么;②钻进岩石力学性质变化大;③原位应力状态很难准确确定;④钻进泥浆与地层之间的物理化学作用复杂。

因此,孔壁稳定性问题一直是钻探工程领域的热点难题。

2.2.1.3 孔壁稳定性研究的一般方法

从1940年开始,国外专家学者从岩石力学破坏机理入手,依据孔壁稳定和失稳理论来解决孔壁坍塌、缩径和破裂,并在理论分析和模拟试验方面进行了大量研究。特别是1987年,V.M.Marry、J.M.Sanzay和B.S.Anndnow等使用应力理论、岩石破坏准则、弹性理论和数学方法对各向同性、异性地层孔壁的稳定性及岩石的破坏形式进行综合分析,使孔壁力学稳定问题的研究和应用进入了一个新时期。国内学者从20世纪80年代初期着手进行钻井孔壁稳定方面的岩石力学理论研究,到20世纪90年代在如下方面取得了进展:①地层矿物组分与地层物理化学性质研究,它是孔壁失稳机理研究的基础;②孔壁稳定化学机理研究,包括泥页岩水化膨胀和分散特性、各种防塌处理剂稳定孔壁机理的研究;③孔壁稳定力学机理研究,分析了地层的强度特征、井眼围岩应力分布,提出了由坍塌压力、破裂压力和孔隙压力形成的安全泥浆密度窗口的概念;④孔壁稳定技术对策研究,确定合理的泥浆密度、最优的防塌泥浆体系和钻井工艺措施。近年来,随着科技的进步,孔壁稳定理论和研究方法又有了较大发展,具体表现是:在试验研究方法上,由传统的定性评价向大型模拟试验方向发展;在理论上,孔壁稳定分析模型不断完善,孔壁失稳的判断准则也得到了不断改进,孔壁失稳的预测更加准确;在计算机模拟研究上,计算机孔壁稳定模拟研究得到较大发展,模拟软件相继诞生。但由于研究孔壁稳定性问题面临着隐蔽的地层参数、地下应力场随时间动态变化等挑战,使研究结果具有很大的不确定性,也使孔壁不稳定性问题难以彻底解决。

目前,研究孔壁稳定的方法主要有两种:一是钻进泥浆化学研究;二是岩石力学研究。泥浆化学研究主要是孔壁围岩水化膨胀的机理,寻找抑制围岩水化膨胀的化学添加剂和泥浆体系,最大限度地减少泥浆对地层的负面影响。岩石力学研究主要包括原位地应力的确定、岩石力学性质的测定、围岩应力和稳定性分析,最终确定孔壁稳定的合理泥浆密度。孔壁稳定的力学与化学耦合分析是上述两种研究方法的有机结合,目的是将泥浆对孔壁的化学作用与孔壁应力作为整体来研究。

与孔壁稳定性有关的力学因素主要包括孔隙压力扩散、毛细管作用、岩石强度特征及地应力分布。与孔壁稳定性有关的物理化学因素主要包括表面水化、渗透水化和离子扩散等。围岩与泥浆接触时产生的表面水化、渗透水化和离子扩散过程最终将导致地层的孔隙压力、岩石原位强度及应力分布状态改变,故物理化学过程最终将表现在力学因素的变化中。因此,无论从纯力学还是力学——物理化学耦合的角度,孔壁稳定性研究最终都归结为力学问题,且遵循图2-1的力学分析过程。

img

图2-1 孔壁稳定力学分析流程图

2.2.2 岩石破坏准则

岩石的破坏主要与外荷载的作用方式、温度及湿度有关。一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。岩石在外力作用下常常处于复杂的应力状态,试验证明,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系,对于较完整的岩石来说,其破坏形式可以分为:脆性破坏(单向应力状态)、延性破坏(三向应力状态)。表2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力—应变曲线示意图。

表2-1 岩石破坏形态示意图

img

续表

img

岩石的应力、应变增长到一定程度,岩石将发生破坏。用来表征岩石破坏条件的函数称为岩石的破坏准则。从表2-1中可以看出,岩石破裂种类繁多,岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述。很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则,对于孔壁稳定性分析来说,较常用的是摩尔—库仑剪切破坏准则和拉伸破坏准则。拉伸破坏准则也称朗肯理论,该理论认为材料破坏取决于绝对值最大的正应力,因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

下面主要介绍摩尔—库仑剪切破坏准则。

摩尔—库仑剪切破坏准则假设,岩石内某一点的破坏主要取决于它的大主应力和小主应力,即σ1σ3,而与中间主应力无关。也就是说,当岩石中某一平面上的剪应力超过该面上的极限剪应力值时,岩石破坏。而这一极限剪应力值,又是作用在该面上法向压应力的函数,即τ=fσ)。

这样,就可以根据不同的σ1σ3绘制摩尔应力图。每个摩尔圆都表示达到破坏极限时应力状态。

一系列摩尔圆的包络线即为强度曲线(见图2-2):

img

图2-2 摩尔圆的包络线图

img

由此可知,材料的破坏与否,与材料内的剪应力有关,同时也与正应力有关。包络线为抛物线适用于软弱岩石;包络线为双曲线或摆线适用于坚硬岩石。

为简化计算,岩石力学中大多采用直线形式(摩尔—库仑准则):

img

式中:c为凝聚力,MPa;φ为内摩擦角,(°)。

当岩石中任一平面上ττf时,即发生破坏,即

img

下面介绍用主应力来表示摩尔—库仑准则。

任一平面上的应力状态可按式(2-4)、式(2-5)计算:

img
img

式中:θ为最大主应力面(σ1)与滑动面的夹角,(°)。

根据摩尔应力圆,可建立任一滑动面的抗剪强度指标与主应力之间关系,如图2-3所示。

img

图2-3 摩尔—库仑破坏准则图

(1)cφ值与σ1σ3θ角关系。

σ1σ3的应力圆上,找出2θ的应力点DDB为半径,img),则与直径DB垂直且与圆相切的直线即为τ=c+σtanφ

根据几何关系可得:img。代入τ=c+σtanφ中,得到

img

σ1σ3表示的στ代入τ=c+σtanφ中,导出

img

img

θ求导,img,推出:img

破坏面与最大主应力面的夹角img,而与最大主应力方向的夹角img

(2)用主应力σ1σ3表达的强度准则。

στ的表达式代入τ=c+σtanφ中:

img

利用几何关系简化得:

img

σ3=0时(单轴压缩):img。令img,则σ1=σ3Nφ+Rc

σ1=0时(单轴抗拉):img。该值为τ=fσ)直线在σ轴上的截距。

岩石破坏的判断条件:

img

当考虑岩石中孔隙压力Pp时,上述σ1σ3分别用σ1-αP pσ3-αP p表示,α为Biot多孔弹性常数。

2.2.3 斜孔柱坐标系中孔壁主应力的确定

斜孔钻进的目的之一是经济地揭示各种目标地层。在大斜度钻孔中经常钻遇大倾角地层。在这些大倾角地层中往往存在低强度的薄弱面,钻穿地层后引起岩石应力的重新分布,当地层应力大于外界泥浆压力时,岩石本体发生破裂,从而引起孔壁垮塌,即使用高密度泥浆孔壁也难以稳定。此时应充分考虑钻孔结构,通过套管进行护壁,维持正常钻进。

img

图2-4 斜孔应力坐标转换图

σv为上覆地应力,σHσh为水平方向的两个主地应力。选取坐标系(1,2,3)分别与主地应力σHσhσv方向一致(见图2-4)。与大地坐标系相比较,坐标系(1,2,3)相当于绕天轴将正北轴旋转到最大水平地应力方位。为方便起见,建立直角坐标系(xyz)和柱坐标系(rθz),其中oz轴对应于孔轴,oxoy位于与孔轴垂直的平面之中。

为了建立(xyz)坐标与(1,2,3)坐标系之间的转换关系,将(1,2,3)坐标系按以下方式旋转:

(1)将坐标(1,2,3)以3为轴,按右手定则旋转β角,变为(x1y1z1)坐标。

(2)将坐标(x1y1z1)以y1为轴,按右手定则旋转α角,变为(xyz)坐标。其中β为孔斜方位与水平最大地应力方位的夹角,α为钻孔顶角。

主地应力坐标系(1,2,3)旋转到坐标系(xyz)后,再转化为柱坐标系,其孔壁应力表达式为

img

其中

img
img

式中:Pp为孔隙压力;Pm为孔内泥浆柱压力;δ为系数,孔壁不渗透时δ=0,孔壁渗透时δ=1;φ为孔隙度;ζ为有效应力系数;ν为泊松比。

假设孔壁泥饼完好,则不考虑泥浆滤液的渗流效应(取δ=0),此时与斜孔对应的柱坐标系中孔壁上的最小、最大有效主应力可表示为

img

式中:σθσzσθz分别表示与斜孔对应的柱坐标系下的切向应力、轴向应力、剪应力。σ1的作用面与z轴的交角为

img

假设地层中有一组平行的强度较低的弱面,在其他方向上地层的强度是相同的。弱面先于岩石本体发生破坏应满足的关系式为

img

其中

img

式中:σ1σ3为最大、最小主应力;Sω为弱面凝聚力;μω为弱面的内摩擦系数;φω为弱面的内摩擦角;λ为弱面的法向与σ1的夹角。

由式(2-14)知,当λ=π/2或φω时,σ1-σ3→∞;而在φωλ<π/2时,弱面才有可能破坏。所以,弱面产生滑动的条件是:

img

岩石本体破坏满足下面的关系式:

img

式中:S0为岩石本体凝聚力;μ0为岩石本体内摩擦系数。

σ1σ3和夹角λ代入弱面模型式(2-15)和式(2-16)中,得到斜孔弱面破坏时的力学模型。

孔壁最大主应力与地层弱面法向的夹角的确定:

在大地坐标系(北,东,天空)中,斜孔顶角为α,方位角为β1,水平方向最大地应力方位角为β3,其中β1和β2均以大地坐标系中北东之间的度数来表示。弱面地层的走向为由北向东,其方位角为β3,地层倾角为θ1,则弱面法线的方向矢量为img

img

孔壁最大主应力σ1的方向矢量在与斜孔对应的直角坐标系中可表示为

img

与斜孔对应的直角坐标系中孔壁最大主应力σ1的方向矢量img在大地坐标系中可表示为

img

其中

img

孔壁最大主应力σ1与弱面法向的夹角λ为:

img

式中:ij值为1,2,3,…。

考虑钻孔方位、顶角、弱面地层倾角和地层走向对斜孔稳定的影响,得出如下一些规律:

(1)当地层倾角为30°且地层走向与最大水平地应力方位一致时,沿着近水平方向最小地应力方位钻进较为安全;当地层走向与水平方向最大地应力方位一致时,只要钻直孔时是安全的,钻斜孔时也安全。尤以该孔斜方位的小斜度孔和大斜度孔(水平孔)最为安全;较大斜度孔和近水平方向最大地应力方位的斜孔钻进最不安全。

(2)斜孔的弱面地层(不同地层走向和地层倾角)、钻孔方位和孔斜角不同,其稳定性是不相同的。

研究结果表明,沿最大水平地应力方位,以30°、60°和90°顶角钻进时,最安全的弱面地层位于地层倾角为70°左右、地层走向与最大水平地应力夹角为50°左右处;最安全处的坍塌压力随钻孔顶角的增大而增大,最终与最不稳定处的坍塌压力相近。从某种程度上说,与最大水平地应力方向呈90°左右夹角处的较大斜度孔较为安全。若条件允许,应推荐小斜度钻孔。在地层走向与最大水平地应力夹角为30°~50°时,水平孔较为有利。

沿最小水平地应力方位,以30°、60°和90°顶钻进时,最安全的弱面地层位于地层走向接近最小水平地应力方位处,地层倾角随顶角的变化而变化。对于小斜度孔,地层倾角在70°左右;对于较大斜度孔,地层倾角在15°左右;对于大斜度孔和水平孔,地层倾角在50°左右。最安全处的坍塌压力随钻孔顶角变化不大,最不安全处的坍塌压力随顶角的增大而降低,最终接近最安全处的坍塌压力值。对于斜孔的弱面地层,没有一成不变的规律可言,钻孔设计要根据计算结果并结合实际情况而定。

2.2.4 泥浆密度安全窗口的确定

钻进过程中,泥浆取代了原孔眼处的岩石,打破了原始地层的平衡,孔壁应力状态发生了改变,可能会造成钻孔的破裂漏失、失稳等复杂状况。因此结合以上岩石分析,从力学角度讲,泥浆的密度成为维持孔壁稳定性的关键要素。泥浆密度是孔壁最大、最小主应力σ1σ3及夹角λ的函数。由式(2-17)可求出维持岩石本体稳定所需要的泥浆密度安全下限值。针对地层,可确定不同地层走向和不同倾角的弱面地层中维持斜孔孔壁稳定所需要的泥浆密度安全下限值。维持孔壁稳定所需的泥浆密度安全下限值越小,孔壁稳定性越好,低密度钻进的安全性就越高。但泥浆密度过小时,孔内液柱压力太低,可能引起孔壁的失稳。对于脆性地层,会产生坍塌掉块,孔径扩大;对于塑性地层,则向孔眼内产生塑性变形,造成缩径。

如果泥浆密度过大,将使得孔壁周围岩石所受压力超过岩石本身强度而产生剪切破坏。因此,钻进过程中泥浆密度大小的设计,不仅要求能维持孔壁稳定,防止孔壁的张性破裂(漏失)和剪切垮塌(塌孔),还要能够维持孔内压力平衡。此时,钻孔的3个压力的确定是关键,即地层孔隙压力、地层破裂压力、地层坍塌压力。所谓安全泥浆密度窗口(Δp)是指钻进过程中不造成漏、喷、卡、塌等孔内事故,能维持孔壁稳定的泥浆密度范围。根据3个压力剖面的关系可得到Δp

ppp,(pp)时:

img

ppp,(pp)时:

img

Δp越大,则钻进越易;Δp越小,则钻进越难。若Δpp循环压耗,则无法正常钻进。

在获取孔壁不发生剪切变形的钻井液液柱压力极限和保证井壁不发生张性破裂的泥浆液柱压力极限后,便可得出保持孔壁稳定的泥浆安全密度窗口。这是从孔壁静力学稳定的角度考虑的安全密度窗口。在实际钻进施工中还必须考虑起下钻、泥浆的循环和设计安全系数等因素的影响。因而必须在前面的安全密度窗口的基础上再加上这些因素引起的附加密度值。

2.2.5 典型地层孔壁稳定性分析

1.破碎地层孔壁稳定性问题

从钻探施工过程中遇到的破碎地层情况看,破碎地层的显著特点是:破碎、不完整,胶结性差,裂缝发育,钻遇断层等。这些特点决定了破碎地层孔壁稳定性差,经常出现孔壁坍塌、掉块、卡钻等复杂孔内事故。

破碎地层孔壁不稳定有以下原因:

(1)孔壁不稳定是由钻孔形成后,孔壁岩层产生的坍塌压力所引起的。钻孔形成后,地应力在孔壁上二次分布引起孔壁岩石向孔内移动,而破碎地层由于岩石不完整、裂缝多,机械强度低,很容易在地层坍塌压力作用下产生掉块、孔壁坍塌等复杂情况。因此孔壁形成后,孔壁岩层所产生的坍塌压力是破碎地层孔壁不稳定的内在因素。

(2)冲洗液或冲洗液滤液进入破碎地层裂缝以后,可能会使地层裂缝进一步加宽,岩石碎块之间的摩擦力降低,使孔壁的机械强度进一步降低;钻进泥浆对孔壁的冲刷,使孔壁的不稳定因素进一步加剧。冲洗液的影响是破碎地层孔壁不稳定的外在因素之一。

(3)施工过程中操作不当,如钻具对孔壁的碰撞、起下钻速度过快等也是造成破碎地层孔壁不稳定不可忽视的因素。

在破碎地层钻探施工中,提高破碎带地层破碎岩块之间的胶结力、快速封堵地层裂缝形成完整孔壁及适当的冲洗液密度是破碎地层孔壁稳定的关键。防塌型随钻堵漏剂、改性沥青的加入能有效封堵地层裂缝,提高孔壁承压能力。

2.塑性地层钻孔缩径问题

钻孔缩径就是孔壁岩层膨胀造成的孔径缩小。由于钻孔缩径,轻则造成岩粉增多,重复钻进,增加隐患,进尺缓慢,成本加大,重则造成埋钻、断钻杆事故,甚至报废钻孔。钻孔缩径主要发生在沉积地层中的黏土岩地层(水敏性地层)、地质构造带(断层泥)、强风化地层(遇水膨胀,风化后砂状破碎)。

钻孔缩径预防措施如下:

(1)在渗透性强的地层中钻进时,冲洗液的API滤失量应控制在5mL以下。

(2)在盐岩层、石膏层、软泥层等蠕变地层中钻进时,应适当提高冲洗液密度,平衡地层压力。

(3)在泥页岩等水敏性地层中钻进时,应使用抑制性强的冲洗液。

(4)外径磨损严重的钻头和扩孔器不得下入孔内。

(5)提钻过程中,应及时回灌冲洗液。

3.流变地层的孔壁稳定性问题

水利水电工程勘察钻遇的流变性地层主要有饱和粉细砂层、饱和砂土层、饱和砂卵石层等。钻遇此类地层一般要采用水泥浆或其他化学浆液、套管护壁,也可采用跟管钻进工艺技术。