7.9 本章小结

本文对分解机的算法原理、参数估计、与其他模型之间的关系、工程实现、分解机的拓展、近实时分解机、分解机在推荐上的应用、分解机的优点等各个方面进行了综合介绍。分解机类似SVM,是一个通用的预测器,适用于任何实值特征向量的预测问题,不仅仅可应用于推荐算法,在广告点击率预估等其他方面都有很大的商业应用价值。鉴于FM模型的巨大优势和商业价值,自从FM被提出后,基于FM模型的学术界研究和工业实践从未止步过,FM模型值得每一位做算法的从业者研究、学习、实践。

参考文献

[1]S Rendle.Factorization Machines with libFM[C].[S.l.]:ACM,2012.

[2]S Rendle.Factorization Machines[C].[S.l.]:IEEE,2010.

[3]Anh-Phuong TA.Factorization Machines with Follow-The-Regularized-Leader for CTR prediction in Display Advertising[C].[S.l.]:IEEE,2015.

[4]Huifeng Guo,Ruiming Tang,Yunming Ye,et al.DeepFM:A Factorization-Machine based Neural Network for CTR Prediction[C].[S.l.]:IJCAI,2017.

[5]Huifeng Guo,Ruiming Tang,Yunming Ye,et al.DeepFM:An End-to-End Wide & Deep Learning Framework for CTR Prediction[C].[S.l.]:Arxiv,2018.

[6]S Rendle,et al.libFM[A/OL].Github(2014-09-15).https://github.com/srendle/libfm.

[7]S Rendle.libFM:Factorization Machine Library[A/OL].Libfm.ory(2014-09-14).http://www.libfm.org.

[8]S Rendle.Scaling Factorization Machines to Relational Data[A].Proceedings of the 39th international conference on Very Large Data Bases[C],Trento:Elsevier Science Ltd,2013.

[9]Christoph Freudenthaler,Lars Schmidt-Thieme,S Rendle.Bayesian Factorization Machines[C].[S.l.]:citeseerx,2011.

[10]S Rendle.Learning Recommender Systems with Adaptive Regularization[C].[S.l.]:ACM,2012.

[11]S Rendle,Z Gantner,C Freudenthaler,et al.Fast Context-aware Recommendations with Factorization Machines[C].[S.l.]:SIGIR,2011.

[12]I Bayer.fastFM:A Library for Factorization Machines[A].The Journal of Machine Learning Research[C],Brooline:Microtome Publishing,2016.

[13]Fajie Yuan,Guibing Guo,Joemon M Jose,et al.Optimizing Factorization Machines for Top-N Context-Aware Recommendations[C].[S.l.]:WISE,2016.

[14]Mu Li,Ziqi Liu,Alexander J Smola,et al.DiFacto:Distributed Factorization Machines[C].[S.I.]:WSDM,2016.

[15]Jun Xiao,Hao Ye,Xiangnan He,et al.Attentional Factorization Machines:Learning the Weight of Feature Interactions via Attention Networks[C].[S.l.]:IJCAI,2017.

[16]Mathieu Blondel,Akinori Fujino,Naonori Ueda,et al.Higher-Order Factorization Machines[C].[S.l.]:NIPS,2016.

[17]Chao Ma,Yuze Liao,Yuan Wang,et al.F2M-Scalable Field-Aware Factorization Machines[C].[S.l.]:NIPS,2016.

[18]Han Liu,Xiangnan He,Fuli Feng,et al.Discrete Factorization Machines for Fast Feature-based Recommendation[C].[S.l.]:IJCAI,2018.

[19]Junwei Pan,Jian Xu,Alfonso Lobos Ruiz,et al.Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising[C].[S.l.]:WWW,2018.

[20]Xiangnan He,Tat-Seng Chua.Neural Factorization Machines for Sparse Predictive Analytics[C].[S.l.]:SIGIR,2017.

[21]Luo Luo,Wenpeng Zhang,Zhihua Zhang,et al.Sketched Follow-The-Regularized-Leader for Online Factorization Machine[C].[S.l.]:KDD,2018.

[22]Yuchin Juan,Yong Zhuang,Wei-Sheng Chin,et al.Field-aware Factorization Machines for CTR Prediction[C].[S.l.]:RecSys,2016.

[23]B Loni.Advanced Factorization Models for Recommender Systems[D].[S.l.]:Nederland,2018.

[24]paynie,Andy Huang,et al.angel[A/OL].Github(2017-06-16).https://github.com/Angel-ML/angel.

[25]H Brendan McMahan,Gary Holt,D Sculley,et al.Ad Click Prediction:a View from the Trenches[C].[S.l.]:KDD,2013.

[26]Xiao Lin,Wenpeng Zhang,Min Zhang,et al.Online Compact Convexified Factorization Machine[C].[S.l.]:WWW,2018.

[27]Jianxun Lian,Xiaohuan Zhou,Fuzheng Zhang,et al.xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems[C].[S.l.]:KDD,2018.