- 构建企业级推荐系统:算法、工程实现与案例分析
- 刘强
- 549字
- 2021-08-06 15:00:03
6.8 本章小结
本章对矩阵分解算法原理、工程实践、应用场景、优缺点等进行了比较全面的总结。矩阵分解算法是真正意义上的基于模型的协同过滤算法。该算法通过将用户和标的物嵌入到低维隐式特征空间,获得用户和标的物的特征向量表示,再通过向量的内积来量化用户对标的物的兴趣偏好,思路非常简单、清晰,也易于工程实现,效果也相当不错,所以在工业界有非常广泛的应用。矩阵分解算法算是开启了嵌入类方法的先河,在NLP领域非常出名的Word2vec也是嵌入方法的代表,深度学习兴起后,各类嵌入方法在大量的业务场景中得到了大规模采用。
参考文献
[1]Yanxiang Huang,B Cui,Jie Jiang,et al.Real-time Video Recommendation Exploration[C].[S.l.]:SIGMOD,2016.
[2]Ernesto Diaz-Aviles,Lucas Drumond,Lars Schmidt-Thieme,et al.Real-Time Top-N Recommendation in Social Streams[C].[S.l.]:ACM,2012.
[3]S Rendle,Lars Schmidt-Thieme.Online-updating regularized kernel matrix factorization models for large-scale recommender systems[C].[S.l.]:ACM,2008.
[4]Dawen Liang,Jaan Altosaar,Laurent Charlin,et al.Factorization Meets the Item Embedding-Regularizing Matrix Factorization with Item Co-occurrence[C].[S.l.]:RecSys,2016.
[5]Y Hu,Y Koren,C Volinsky.Collaborative Filtering for Implicit Feedback Datasets[C].[S.l.]:IEEE,2008.
[6]Y Zhou,D Wilkinson,R Schreiber,et al.Large-Scale Parallel Collaborative Filtering for the Netflix Prize[C].[S.l.]:AAIM,2008.
[7]J Nguyen,M Zhu.Content-boosted Matrix Factorization Techniques for Recommender Systems[C].[S.l.]:Statistical Analysis and Data Mining,2013.
[8]Y Koren,R Bell,C Volinsky.Matrix Factorization Techniques for Recommender Systems[C].[S.l.]:IEEE,2009.
[9]Maciej Kula.Metadata Embeddings for User and Item Cold-start Recommendations[C].[S.l.]:CBRecSys,2015.
[10]O Levy,Y Goldberg.Neural Word Embedding as Implicit Matrix Factorization[C].[S.l.]:NIPS,2014.
[11]Y Koren.Collaborative Filtering with Temporal Dynamics[C].[S.l.]:ACM SIGKDD,2009.
[12]Y Koren.Factorization Meets the Neighborhood:A Multifaceted Collaborative Filtering Model[C].[S.l.]:ACM SIGKDD,2008.
[13]R Bell,Y Koren.Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights[C].[S.I.]:ICDM,2007.
[14]S Rendle,Schmidt-Thieme,et al.Online-updating regularized kernel matrix factorization models for large-scale recommender systems[C].[S.l.]:RecSys,2008.
[15]João Vinagre,Alípio Mário Jorge,João Gama.Fast incremental matrix factorization for recommendation with positive-only feedback[C].[S.l.]:UMAP,2014.
[16]Zhisheng Wang,Qi Li,Ye Liu,et al.Online personalized recommendation based on streaming implicit user feedback[C].[S.l.]:APWeb,2015.
[17]Alexandros Karatzoglou,Xavier Amatriain,Linas Baltrunas,et al.Multiverse recommendation:N-dimensional tensor factorization for context-aware collaborative filtering[C].[S.l.]:RecSys,2010.
[18]Yi Fang,Luo Si.Matrix co-factorization for recommendation with rich side information and implicit feedback[C].[S.l.]:HetRec,2011.