5.7 本章小结

本章讲解了关联规则、朴素贝叶斯、聚类这3类基础机器学习算法用于个性化推荐的理论知识,同时从算法原理和工程实现的角度简单总结了YouTube和Google News的三篇分别采用关联规则、朴素贝叶斯、聚类思路来做推荐的论文。这几篇论文有很强的工程指导意义,值得读者学习。

虽然这些算法原理简单、容易理解,但是这些算法却在工业界有过非常好的应用,在当时算是非常优秀的算法。这些算法现在可能看起来太简单了,也可能不会用在现在的推荐系统上,但它们朴素的思想下面蕴含的是深刻的道理,值得推荐从业者学习、思考、借鉴,希望读者可以很好地理解它们,并吸收这些朴素思想背后的精华。

参考文献

[1]James Davidson,Benjamin Liebald,Junning Liu,et al.The YouTube Video Recommendation System[C].[S.l.]:RecSys,2010.

[2]Jiahui Liu,Peter Dolan,Elin Rønby Pedersen.Personalized News Recommendation Based on Click Behavior[C].[S.l.]:Proceedings of the 2010 International Conference on Intelligent User Interfaces,2010.

[3]Abhinandan Das,Mayur Datar,Ashutosh Garg,et al.Google news personalization:Scalable online collaborative flitering[C].[S.l.]:WWW,2007.

[4]J J Sandvig,Bamshad Mobasher,Robin Burke.Robustness of collaborative recommendation based on association rule mining[C].[S.l.]:ACM,2007.

[5]Badrul Sarwar,George Karypis,Joseph Konstan,et al.Analysis of recommendation algorithms for e-commerce[C].[S.l.]:ACM,2000.

[6]Rakesh Agrawal,Ramakrishnan Srikant.Fast algorithms for mining association rules[C].[S.l.]:VLDB Conference,1994.

[7]Weiyang Lin,Sergio A Alvarez,Carolina Ruiz.Efficient adaptive-support association rule mining for recommender systems[C].[S.l.]:Data Mining and Knowledge Discovery,2002.

[8]Xiaobin Fu,Jay Budzik,Kristian J Hammond.Mining navigation history for recommendation[C].[S.l.]:Proceedings of the 5th international conference on Intelligent user interfaces,2000.

[9]Mei-Ling Shyu,C Haruechaiyasak,Shu-Ching Chen,et al.Collaborative filtering by mining association rules from user acess sequences[C].[S.l.]:Web Information Retrieval and Integration,2005.

[10]Jiawei Han,Jian Pei,Yiwen Yin,et al.Mining frequent patterns without candidate generation[C].[S.l.]:Data Mining and Knowledge Discovery,2004.

[11]Haoyuan Li,Yi Wang,Dong Zhang,et al.Pfp:parallel fp-growth for query recommendation[C].[S.l.]:RecSys,2008.

[12]Jian Pei,Jiawei Han,B Mortazavi-Asl,et al.Mining sequential patterns by pattern-growth:the PrefixSpan approach[C].[S.l.]:IEEE,2004.

[13]John S Breese,David Heckerman,Carl Kadie.Empirical analysis of predictive algorithms for collaborative filtering[C].[S.l.]:Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence,1998.

[14]Yung-Hsin Chen,Edward I George.A Bayesian model for collaborative filtering[C].[S.l.]:AISTATS,1999.

[15]Koji Miyahara,Michael J Pazzani.Collaborative filtering with the simple Bayesian classifier[C].[S.l.]:PRICAI,2000.

[16]Kai Yu,Anton Schwaighofer,Volker Tresp,et al.Probabilistic memory-based collaborative filtering[C].[S.l.]:IEEE,2004.

[17]LH Ungar,DP Foster.Clustering methods for collaborative filtering[C].[S.l.]:AAAI workshop on recommendation systems,1998.

[18]Sonny Han Seng Chee,Jiawei Han,Ke Wang.Rectree:A efficient collaborative filtering method[C].[S.l.]:Data Warehousing and Knowledge Discovery,2001.

[19]Gui-Rong Xue,Chenxi Lin,Qiang Yang,et al.Scalable collaborative filtering using cluster-based smoothing[C].[S.l.]:SIGIR,2005.

[20]T Hofmann,J Puzicha.Latent class models for collaborative filtering[C].[S.l.]:IJCAI,1999.