- Python Machine Learning Cookbook(Second Edition)
- Giuseppe Ciaburro Prateek Joshi
- 413字
- 2021-06-24 15:41:07
How to do it...
Let's see how to perform a clustering data analysis using the k-means algorithm:
- The full code for this recipe is given in the kmeans.py file that has already been provided to you. Now let's take a look at how it's built. Create a new Python file, and import the following packages:
import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans
- Now let's load the input data and define the number of clusters. We will use the data_multivar.txt file that has already been provided to you:
input_file = ('data_multivar.txt')
# Load data
x = []
with open(input_file, 'r') as f:
for line in f.readlines():
data = [float(i) for i in line.split(',')]
x.append(data)
data = np.array(x) num_clusters = 4
- We need to see what the input data looks like. Let's go ahead and add the following lines of code to the Python file:
plt.figure() plt.scatter(data[:,0], data[:,1], marker='o', facecolors='none', edgecolors='k', s=30) x_min, x_max = min(data[:, 0]) - 1, max(data[:, 0]) + 1 y_min, y_max = min(data[:, 1]) - 1, max(data[:, 1]) + 1 plt.title('Input data') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(())
If you run this code, you will get the following output:
- We are now ready to train the model. Let's initialize the kmeans object and train it:
kmeans = KMeans(init='k-means++', n_clusters=num_clusters, n_init=10) kmeans.fit(data)
- Now that the data is trained, we need to visualize the boundaries. Let's go ahead and add the following lines of code to the Python file:
# Step size of the mesh step_size = 0.01 # Plot the boundaries x_min, x_max = min(data[:, 0]) - 1, max(data[:, 0]) + 1 y_min, y_max = min(data[:, 1]) - 1, max(data[:, 1]) + 1 x_values, y_values = np.meshgrid(np.arange(x_min, x_max, step_size), np.arange(y_min, y_max, step_size)) # Predict labels for all points in the mesh predicted_labels = kmeans.predict(np.c_[x_values.ravel(), y_values.ravel()])
- We just evaluated the model across a grid of points. Let's plot these results to view the boundaries:
# Plot the results predicted_labels = predicted_labels.reshape(x_values.shape) plt.figure() plt.clf() plt.imshow(predicted_labels, interpolation='nearest', extent=(x_values.min(), x_values.max(), y_values.min(), y_values.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.scatter(data[:,0], data[:,1], marker='o', facecolors='none', edgecolors='k', s=30)
- Now let's overlay centroids on top of it:
centroids = kmeans.cluster_centers_ plt.scatter(centroids[:,0], centroids[:,1], marker='o', s=200, linewidths=3, color='k', zorder=10, facecolors='black') x_min, x_max = min(data[:, 0]) - 1, max(data[:, 0]) + 1 y_min, y_max = min(data[:, 1]) - 1, max(data[:, 1]) + 1 plt.title('Centoids and boundaries obtained using KMeans') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
If you run this code, you should see the following output:
The four centroids and their boundaries are sufficiently highlighted.