How to do it…

Let's see how to compute the relative importance of features:

  1. Let's see how to extract this. Add the following lines to housing.py:
DTFImp= dt_regressor.feature_importances_
DTFImp= 100.0 * (DTFImp / max(DTFImp))
index_sorted = np.flipud(np.argsort(DTFImp))
pos = np.arange(index_sorted.shape[0]) + 0.5

The regressor object has a callable feature_importances_ method that gives us the relative importance of each feature. To compare the results, the importance values have been normalized. Then, we ordered the index values and turned them upside down so that they are arranged in descending order of importance. Finally, for display purposes, the location of the labels on the x-axis has been centered.

  1. To visualize the results, we will plot the bar graph:
plt.figure()
plt.bar(pos, DTFImp[index_sorted], align='center')
plt.xticks(pos, housing_data.feature_names[index_sorted])
plt.ylabel('Relative Importance')
plt.title("Decision Tree regressor")
plt.show()
  1. We just take the values from the feature_importances_ method and scale them so that they range between 0 and 100. Let's see what we will get for a decision tree-based regressor in the following output:

So, the decision tree regressor says that the most important feature is RM.

  1. Now, we carry out a similar procedure for the AdaBoost model:
ABFImp= ab_regressor.feature_importances_ 
ABFImp= 100.0 * (ABFImp / max(ABFImp))
index_sorted = np.flipud(np.argsort(ABFImp))
pos = np.arange(index_sorted.shape[0]) + 0.5

  1. To visualize the results, we will plot the bar graph:
plt.figure()
plt.bar(pos, ABFImp[index_sorted], align='center')
plt.xticks(pos, housing_data.feature_names[index_sorted])
plt.ylabel('Relative Importance')
plt.title("AdaBoost regressor")
plt.show()

Let's take a look at what AdaBoost has to say in the following output:

According to AdaBoost, the most important feature is LSTAT. In reality, if you build various regressors on this data, you will see that the most important feature is in fact LSTAT. This shows the advantage of using AdaBoost with a decision tree-based regressor.