参考文献

[1] Duan Y X, Liu J. Molecular weight dependence of thepoly(L-lactide)/poly(D-lactide) stereocomplex at the air-water interface. Biomacromolecules, 2006, 7: 2728-2735.

[2] Mano Joao F, et al. Structural evolution of the amorphous phase during crystallization of poly(L-lactic acid): Asynchrotron wide-angle X-ray scattering study. Journal of Non-Crystalline Solids, 2007:1-6.

[3] Pandy A, Pandy G C, Aswath P B. Synthesis of polylactic acid-polyglycolic acid blends using microwave radiation. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 227-233.

[4] 雷燕湘.聚乳酸技术与市场现状及发展前景.当代石油化工,2007,15(1):39-43.

[5] 赵春深,杨绍娟,王远航.聚乳酸合成及应用研究进展.安徽农业科学,2009,37(24):11392-11394.

[6] Doi Y, Fukuda K. Biodegradable plastics and polymers. Amsterdam, Elsevier, 1994:577-590.

[7] Abe H, Takahashi N, Kim K J,Mochizuki M,Doi Y,et al. Thermal degradation processes of end-capped poly(L-lactide)s in the presence and absence of residual zinc catalyst. Biomacromolecules, 2004, 5(4): 1606-1614.

[8] Huang Y S, Cui F Z. Preparation of biodegradable poly(lactic acid-co-aspartic acid) by copolymerization processes. Current Applied Physics, 2005, 5: 546-548.

[9] Carothers WH, Dorough GL, Van Natta EJ. Polymerization and ring formation (Ⅹ) reversible polymerization of six-membered cyclic esters. J Am Chem Soc, 1932, 54: 761-773.

[10] Lu D D, Yang L Q, Zhou T H, Lei Z Q. Synthesis, characterization and properties of biodegradable polylactic acid-β-cyclodextrin cross-linked copolymer microgels. European Polymer Journal, 2008, 44: 2140-2145.

[11] Narayan R. Drivers and rationale for use of bio-based materials based on life cycle assessment. GPC 2004, Michigan State, Michigan State University, 2004, 18.

[12] Hartmann M H. Biopolymers from Renewable Resources: Chapter 15 High molecular weight polylactic acid polymer. Berlin:Springer, 1998:367-411.

[13] 莫志深,等.高分子结晶与结构.北京:科学出版社,2017.

[14] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromolecular Bioscience, 2004, 4: 835-864.

[15] Garlotta D. A literature review of poly(lactic acid). J Polym Environ, 2001, 9(2): 63-84.

[16] Drumright R E, Gruber P R, Henton D E. Polylactic acid technology. Adv Mater, 2000, 12(23): 1841-1846.

[17] Carothers W H. Hoogs of chloroprene and their polymers. J Am Chem Soc, 1932, 54: 4071-4076.

[18] Lowe C E. Preparation of high molecular weight polyhydroxyacetic ester:US2668162. 1954-02-02.

[19] Hofvendahl K, Hahn-Hägerdal B. lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme and Mcrobial Technology, 1997, 20: 301-307.

[20] Zhang D X, Cheryan M. Starch to lactic acid in a continuous membrane bioreactor. Process Biochemistry, 1994, 29: 145-150.

[21] Kerckhoff W G. The preparation of crystalline lactic acid. J Biol Chem, 1933, 102: 449-460.

[22] Schouten A, Kanters J A, Krieken J. Low-temperature crystal structure and molecular conformation of L-(+)-lactic acid. J Mol Struct, 1994, 323: 165-168.

[23] Saville G, Gundry H A. The heats of combustion, solution and ionization of lactic acid. Trans Faraday Soc, 1959, 55: 2036-2038.

[24] Vanalphen J. Quebrachitol cyslic polyalcohol from natural rubber latex. Ind Eng Chem, 1951, 43: 141-145.

[25] Huffman H M, Ellis E L, Borsook H.Thermal data Ⅺ.The heat capacities and entropies of guanidine carbonate, glutamic acid hydrochloride, ornithine dihydrochloride, d-lactic acid and l-lactic acid.J Am Chem Soc, 1940, 62: 297-299.

[26] Parks G S, Thomas S B, Light D W.Some new heat capacity data for organic glasses. the entropy and free energy of dl-lactic acid.J Chem Phys,1936, 4: 64-69.

[27] Auras R, Lim L, Selke S E, Tsuji H.Poly(lactic acid)synthesis,structures.properties,processing,and application.New York:John Wiley & Sons Inc,2010.

[28] Benninga H, A History of Lactic acid Making. Dordrecht:Kluwer Academic Publishers, 1990.

[29] Holten C H, Müller A, Rehhinder D. Lactic Acid. Weinheim:Verlag Chemie, 1971.

[30] Schlicher L R, Cheryan M. Reverse osmosis of lactic acid fermentation broths. J Chem Technol Biotechnol, 1990, 49: 129-140.

[31] Cheng P, Mueller R, Jaeger S. Lactic acid production from enzyme thinned corn starch using lactobacillus amylovorus. J Ind Microbiol, 1991, 7: 27-34.

[32] Zhang D X, Cheryan M. Direct fermentation of starch to lactic acid by lactobacillus amylovorus. Biotechnology Letter, 1991, 13: 733-738.

[33] Yumoto I, Ikeda K. Direct fermentation of starch to L-(+)-lactic acid using lactobacillus amylophilus. Biotechnol Lett, 1995, 17: 543-546.

[34] Aeschlimann A, Vonstockar U. Continuous production of lactic acid from whey permeate by lactobacillus helveticus in a cell recycle reactor. Enzyme Microb Technol, 1991, 13: 811-816.

[35] Goksungur Y, Guvenc U. Batch and continuous production of lactic acid from beet molassess by lactobacillus delbrueckii IFO 3202. J Chem Technol Biotechnol, 1997, 69: 399-404.

[36] Mc Cadkey T A, Zhou S D, Britt S N. Bioconversion of municipal solid waste to lactic acid by lactobacillus species. Appl Biochem Biotechnol, 1994, 45-6: 555-568.

[37] Payot T, Chemaly Z, Fick M. Lactic acid production by bacillus coagulans kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microbial Technol, 1999, 24: 191-199.

[38] Magne V, Mathlouthi M, Robilland B. Determination of some organic acids and inorganic anions in beet sugar by ionic HPLC. Food Chem, 1998, 61(4): 449-453.

[39] Amrane A, Prigent Y. Lactic acid production from lactose in batch culture analysis of the data with the help of a mathematical model relevance for nitrogen source and preculture assessment. Appl Microbiol Biotechnol, 1994, 40(5): 644-649.

[40] Amrane A, Prigeny Y. A novel concept of bioreactor. Specialized function two stage continuous reactor, and its application to lactose conversion into lactic acid. J Biotechnol, 1996, 45(3): 195-203.

[41] Melzoch K, Votruba J,Habova V,Rychtera M.Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol, 1997, 56(1): 25-31.

[42] Stiles M E, Holzapfel W H. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol, 1997, 36(1): 1-29.

[43] Hofvendahl K, HahnHagerdal B. L-lactic acid production from whole wheat flour hydrolysate using strains of lactobacilli and lactococi. Enzyme Microb Technol, 1997, 20(4): 301-307.

[44] Fordyce A M, Crow V L, Thomas T D. Regulation of product formation during glucose or lactose limitation in nongrowing cells of streptococcus lactis. Appl Environ Microbiol, 1984, 48(2): 332-337.

[45] Norton S, Lacroix C, Vuillemard J C. Kinetic study of continuous whey permeate fermentation by immobilized lactobacillus helveticus for lactic acid production. Enzyme Microb Technol, 1994, 16(6): 457-466.

[46] Thomas T D, Ellwood D C, Longyear V. Change from homo-fermentation to heterolactic fermentation by streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol, 1979, 138(1): 109-117.

[47] Sjoberg A, Persson I,Quednau M,Hahnhagerdal B.The influence of limiting and nonlimiting growth condition on glucose and maltose metabolism in lactococcus lactis ssp lactis strains. Appl Microbiol Biotechnol, 1995, 42(6): 931-938.

[48] 杨斌.绿色塑料聚乳酸.北京:化学工业出版社,2007:24.

[49] Breugel J, Krieken J, Cerda Baro A, Vidal Lancis J M, Camprubi Vila M. Method of industrial scale purification of lactic acid. NetherLands,WO/2000/56693, 2000.

[50] Krieken J.Method for the purification of an Sg(a)-hydroxy on industrial scale. NetherLands,WO 2002/022546, 2002.

[51] Yen Y. Cheryan M. Separation of lactic acid from whey permeate fermentation broth by electrodialysis. Trans Inst Chemical Engrs(UK),1991, 69(C): 200-205.

[52] Visser D, Breugel J, Bruijn J M, Campo P.Lactic acid production from concentrated raw sugar beet juice. Netherlands,WO 08/000699, 2008.

[53] Whistler R L, BeMiller J N. Carbohydrate Chemistry for Food Scientists.American Association of Cereal Chemist Inc.St. Paul, 1997, 117.

[54] Anuradha R, Suresh A K, Venkatesh K V. Simultaneous saccherification and fermentation of starch to lactic acid. Process Biochem,1999, 35(3-4): 367-375.

[55] Bailly M. Production of organic acids by bipolar electrodialysis: realizations and perspectives. Desalination, 2002, 144(1-3), 157-162.

[56] Witzke D R.Introduction to properties, engineering, and prospects of polylactide polymers. East Lansing:MI,Department of Chemical Engineering, Michigan State University,1997.

[57] Sinclair K, Richard G. Copolymers of D,L-lactide and epsilon caprolactone:US,4045418.1977-08-30.

[58] 罗彦凤,王远亮,潘君,等.单体-丙交酯合成方法的研究进展.高分子材料科学与工程,2003,19(1):28-30.

[59] Okuyama H, Ogakiuchi M, Kawamoto T. Production of lactide:JP 10130256. 1998-03-15.

[60] Kulkarni B K, Moore E G, Hegyelli A F, et al. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res, 1971, 5: 169-181.

[61] 苏涛,李超文,黄尚友.无需高真空度的D,L-丙交酯合成工艺.化工时刊,1998,12(6):14-16.

[62] 穆萌,贺爱华,李霞,等.丙交酯合成过程中裂解工艺的研究.青岛科技大学学报:自然科学版,2011,32 (5):500-505.

[63] Ohkaito M, Okuyama H, Kawamoto T. Condensed cyclic lactone and its production:JP 1135579.1999-06-25.

[64] 李南,姜文芳,赵京波,杨文泰.D,L-丙交酯的制备及在二甲苯溶液中的开环聚合.高分子材料科学与工程,2005,21(2):73-76.

[65] 王华林,方大庆,史铁钧,等.聚D,L-乳酸中间体-D,L-丙交酯的合成.高分子材料科学与工程,2005,21(5):51-53.

[66] 景巍巍.高相对分子质量聚乳酸合成工艺的进一步优化研究[D].南京:南京理工大学,2009.

[67] 邱奎,王远亮,程超,等.乳酸钠催化合成丙交酯的研究.化工新型材料,2008,36(5):48-52.

[68] 朱久进,王远亮,罗彦凤,吴科达,程超.稀土复合氧化物催化合成丙交酯的研究.分子催化,2003,17(6):430-433.

[69] 韩宁,王鹏,张英民. D,L-丙交酯提纯溶剂的选择研究.过程工程学报,2007, 7(2):306-309.

[70] 褚艳红,张国宝,赵根锁,等.L-丙交酯的制备工艺研究.河南科学,2008, 26(12):1474-1476.

[71] 李南,姜文芳,赵京波,等.D,L-丙交酯的合成及纯化.石油化工,2003,32(12):1073-1077.

[72] 刘迎,魏荣卿,刘晓宁,等.丙交酯交替溶剂重结晶纯化法及其对聚合的影响.高校化学工程学报,2008,22(6):1065-1070.

[73] 张海坡,阮建明,李亚军,等.高纯度、高收率L-丙交酯的制备.粉末冶金材料科学与工程,2004,9(3):259-164.

[74] 李霞,刘晨光,贺爱华. L-丙交酯的纯化研究.青岛科技大学学报:自然科学版,2011,32(5):509-513.

[75] 石梁萍,王远亮,陈佳,等.乳酸低聚物水解料合成丙交酯.重庆大学学报:自然科学版,2006,29(12):107-110.

[76] 魏军.聚L-乳酸的合成研究[D].南京:南京工业大学,2007.

[77] 于江涛,马海洪.丙交酯合成研究的进展.聚酯工业,2009,22(2):4-9.

[78] Kinoshita Y I, Kata Y. Synthesis and characterization of poly(L-lactic acid) reinforced by biomesogenic units. Polymer Degradation and Stability, 1993, 4: 729-731.

[79] Suong H, Khosrow J, Yoshito I. Synthesis of polylactides with different molecular weights. Biomaterials, 1997, 16: 1503-1508.

[80] Krul L P, Volozhyn A L, Belov D A. Nanocomposites based on poly-D,L-lactide and multiwall carbon nanotubes. Biomolecular Engineering, 2007, 24: 93-95.

[81] Umare P S, Tembe G L, Rao K V. Catalytic ring-opening polymerization of L-lactide by titanium biphenoxy-alkoxide initiators. Journal of Molecular Catalysis A: Chemical, 2007, 268: 235.

[82] 秦志忠,秦传香,曹雪琴.聚乳酸的直接合成研究(Ⅱ).合成技术及应用,2003,18:1-2.

[83] Kéki S, Bodnár I, Borda J, Deák G, Zsuga M. Melt polycondesation of D, L-lactic acid: MALDI-TOFMS investigation of the ring chain equilibrium. J Phys Chem B, 2001, 105(14): 2833-2836.

[84] Ajima M, Enomoto K, et al. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn, 1995, 68(8): 2125-2131.

[85] Moon S, Lee C W, Miyamoto M, Kimura Y M J. Melt polycondensation of L-lactic acid with Sn(Ⅱ) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(L-lactic acid). Polym Sci Part A, 2000, 38: 1673-1679.

[86] Chen G X, Kim H , Kim E S, Yoon J S. Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state. Eur Polym J, 2006, 42(2): 468-472.

[87] Tuominen J, Seppälä J V. Synthesis and characterization of lactic acid based poly(ester-amide). Macromolecules, 2000, 33(10): 3530-3535.

[88] Po R, Abis L, Fiocca L, Masani R. Synthesis and characterization of poly(ester amide)s from bis(2-oxazoline)s, anhydrides, and diols. Macromolecules, 1995, 28(17): 5699-5705.

[89] Tuominen J, Kylmä J, Kapanen A, Venelampi O, Itävaara M, Seppälä J V. Biodegradation of lactic acid based polymers under controlled composing conditions and evaluation of the ecotoxicological impact. Biomacromolecules, 2002, 3(3): 445-455.

[90] 黎丽.溶液共沸法合成较高分子量的聚乳酸.华东理工大学学报:自然科学版,2006,(6):672-675.

[91] 李克友,张菊华.高分子合成原理及工艺学.北京:科学出版社,1999.

[92] Ajioka M, Enomoto K, Suzuki K, et al. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn, 1995, 68(8): 2125-2131.

[93] 秦志忠,杨百春,曹雪琴.生物降解材料——聚乳酸的直接合成研究(Ⅰ).合成技术及应用,1999,15(1):12-14.

[94] 任杰,王秦峰.一种乳酸直接缩聚制备聚乳酸的聚合反应装置:CN2641046.2009-09-15.

[95] 钟伟,戈进杰,马敬红.聚乳酸的直接缩聚制备及其异氰酸酯扩链探索.复旦学报:自然科学版,1999,38(6):705-708.

[96] 陈春明.离子液体/氯化亚锡催化合成聚乳酸的研究.合成纤维工业,2009, 32(6):5-7.

[97] Katashi Enomoto,Masanobu Ajioka,Akihiro Yamaguchi.Polyhydroxycarboxylic acid and preparation process thereof:US 5310865.1994-05-10.

[98] Fumiaki Ichikawa,Mineo Kobayashi,Masahiro Ohta,Yasunori Yoshida,Shoji Obuchi,Hiroyuki Itoh.Process for preparing polyhydroxycarboxylic acid:US5440008.1995-08-08.

[99] Takeshi Kashima,Taiji Kameoka,Chojiro Higuchi,Masanobu Ajioka,Akihiro Yamaguchi.Aliphatic polyester and preparation process thereof:US5428126.1995-01-27.

[100] Shoji Obuchi,Masahiro Ohta.Polyhydroxycarboxylic acid and purification process thereof:US,5386004.1995-01-31.

[101] Achmad F, Yamane K, Quan S, et al. Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chemical Engineering, 2009, 151(123): 342-350.

[102] 余木火,徐红.一种高分子量聚乳酸的制备方法:CN1757659.2006-04-12.

[103] 杨青芳,张爱军,梁建锋,叶佳佳.熔融阶梯缩聚法合成聚乳酸.高分子材料科学与工程,2009,25(2):17-20.

[104] 杨惠,刘文明,黄小强,等.聚乳酸合成及改性研究进展.合成纤维,2008, 3(1):13.

[105] 宇恒星.聚乳酸聚合及降解的动力学研究[D].上海:东华大学,2002.

[106] 赵文军,孙晓红,汪群慧,滕云.从餐厨垃圾所得乳酸丁酯经熔融固相聚合成聚乳酸的研究.应用基础与工程科学学报,2009,17(3):335-342.

[107] Moon SI, Lee C-W, Taniguchi I. Miyamoto M, Kimura Y. Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight. Polymer, 2001,42(11): 5059-5062.

[108] Nakano Y, Makino M, Yamane H, et al. Role of chain extender in the blends of liquid crystalline/flexible polyesters. Japan J Polym Sci & Tech, 1992, 49: 635-643.

[109] 汪朝阳,赵耀明.扩链反应在高分子材料合成中的应用.化学推进剂与高分子材料,2003,1(6): 23-26.

[110] Hiltunen K,et al. J Appl Polym Sci, 1997, 67: 10-11.

[111] Nijenhuis AJ, Grijpma DW, Pennings AJ. Lewis acid-catalyzed polymerization of L-lactide kinetics and mechanism of the bulk-polymerization. Macromolecules, 1992, 25(24): 6419-6424.

[112] Kricheldorf H, Kreiser-Saunders I, Boettcher C. Polylactones.31. SN(Ⅱ) octoate initiated polymerization of L-lactide A mechanistic study. Polymer, 1995, 36(6): 1253-1259.

[113] Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(Ⅱ) octoate. 3. polymerization of L,L-dilactide. Macromolecules, 2000, 33(20): 7359-7370.

[114] Kowalski A, Libiszowski J, Duda A, Penczek S. Polymerization of L,L-dilactide initiated by tin(Ⅱ) butoxide. Macromolecules,2000, 33(6): 1964-1971.

[115] Ryner M, Finne A, Albertsson A, Kricheldorf H. L-lactide macromonomer synthesis initiated by new cyclic tin alkoxides functionalized for brushloke structures. Macromolecules, 2001, 34(21): 7281-7287.

[116] Aubrecht KB, Hillmyer MA, Tolman W. Polymerization of lactide by monomeric Sn(Ⅱ) alkoxide complexes. Macromolecules, 2002, 35(3): 644-650.

[117] Kricheldorf H, Fechner B. Polylactones.59. Biodegradable networks via ring-expansion polymerization of lactone and lactides with a spirocyclic tin initiator. Biomacromolecules, 2002, 3(4): 691-695.

[118] Bourissou D, Martin-Vaca B, Dumitrescu A,Graullier M,Lacombe F.Controlled cationic polymerization of lactide. Macromolecules, 2005, 38(24): 9993-9998.

[119] Bhaw-Luximon A, Jhurry D, Spassky N, Pensec S, Belleney J. Anionic polymerization of D,L-lactide initiated by lithium diisopropylamide. Polymer, 2001, 42: 9651.

[120] Kricheldorf H R, Boettcher C. Polylacones.27.Anionic-polymerization of L-lactide-variation of endgroups and synthesis of block-copolymers with poly(ethylene oxide).Makromol Chem Macromol Symp, 1993, 73: 47-64.

[121] Jedlinski Z, Walach W, Kurcok P, Adamus G. Polymerization of lactones of 12.polymerization of L-Dilactide and L,D-dilactide in the presence of potassium methoxide.Makromol Chem, 1991, 37: 2051-2057.

[122] Sipos L, Zsuga M. Anionic polymerization of L-lactide effect of lithium and potassium as counterions.Pure Appl Chem, 1997, A34: 1269-1284.

[123] Kowalski A, Duda A, Penczek S. Polymerization of L,L-Lactide Initiated by Aluminum Isopropoxide Trimer or Tetramer. Macromolecules, 1998, 31(7): 2114-2122.