- MATLAB矩阵分析和计算
- 杜树春
- 315字
- 2021-04-02 01:00:19
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739019797-dM1VaLL78VGcPDZo8x7Uta5Sy49R1xbn-0-1c29f60d27372a1557b3f46da3c52d77)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739019797-P5JruHxPLSw3ZEDcCxZOKm9FdEGsqT9G-0-f6d956292a59a99d759ade7250da1cbe)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739019797-RhtNlxbjkuGnAhjl6wROao1FqPf3aIMK-0-4e7abc917bc262d29216fc640458d44d)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739019797-UwIoHY98tOFN4JwnaL8tTormqmYOr75H-0-7ddd21a2daa06be3d4db2c7a89ac8b82)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739019797-EcrXHYcGtuCvofJbbjRDgCGW2rhEm5cf-0-92bc85319508ef1e9119e4f2542131a8)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739019797-A6w8ZHzq5c8ZgtMeVZ5OklzJSkd15ySR-0-bf60fd740c026e8df2f4f24a28355484)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739019797-ahjbr2ZRU4Z556XUZQpdBvx4fd8jiLqD-0-ff82f30e8889ae9b753b8506a2450dd7)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739019797-6ySW8EBvxjIxHQHSNfnW0KBDIk6sANLE-0-8d475f018ce9077705039e6fd8d5a1d8)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739019797-5NoEbQTbmSxrMFvlSatf4vFfML8C1vDi-0-0b60d164d46b9a066c49062907c03353)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739019797-rGiTEYGiobLUHIdrCmaKkq1PEyoYHMXG-0-57da5ba13f9538e8b47490af125b94c5)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739019797-1sH9JJSXmbswGUOgRNE3pCw7Snx2neiv-0-8c19a7bf6e82605f1bc13b39c9a2a652)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739019797-uNBKIMmvJqyJgdnWijMialVPi1WIud18-0-245cbd9c4fc92488731f5c894e7accc3)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739019797-HW6LAGAArze3DUdIt3N6meFFKnHTB610-0-d146e183de8e0ab0ffece7cc84f26885)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739019797-t7BIJBx5kpirZBMah2yEPKNU3dAGOCFv-0-fa62ab1ff0b5b96cb4a4712ac6d701da)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739019797-xVl8CrdsYzqxjFow8TcIr0OHUKFer4Kt-0-96a48b2d59e23fe94e1c6b379dcd04cc)