Apache Flink零基础实战教程:如何计算实时热门商品

作者 伍翀

在上一篇入门教程http://wuchong.me/blog/2018/11/07/5-minutes-build-first-flink-application/中,我们已经能够快速构建一个基础的Apache Flink(以下简称Flink)程序了。本文会一步步地带领你实现一个更复杂的Flink应用程序:实时热门商品。在开始本文前我们建议你先实践一遍上篇文章,因为本文会沿用上文的my-flink-project项目框架。

通过本文你将学到:

1.如何基于EventTime处理,如何指定Watermark

2.如何使用Flink灵活的Window API

3.何时需要用到State,以及如何使用

4.如何使用ProcessFunction实现TopN功能

实战案例介绍

本案例将实现一个“实时热门商品”的需求,我们可以将“实时热门商品”翻译成程序员更好理解的需求:每隔5分钟输出最近一小时内点击量最多的前N个商品。将这个需求进行分解我们大概要做这么几件事情:

· 抽取出业务时间戳,告诉Flink框架基于业务时间做窗口

· 过滤出点击行为数据

· 按一小时的窗口大小,每5分钟统计一次,做滑动窗口聚合(Sliding Window)

· 按每个窗口聚合,输出每个窗口中点击量前N名的商品

数据准备

这里我们准备了一份某电商用户行为数据集来自阿里云天池公开数据集:https://tianchi.aliyun.com/datalab/index.htm。本数据集包含了某电商上某一天随机一百万用户的所有行为(包括点击、购买、加购、收藏)。数据集的组织形式和MovieLens-20M类似,即数据集的每一行表示一条用户行为,由用户ID、商品ID、商品类目ID、行为类型和时间戳组成,并以逗号分隔。关于数据集中每一列的详细描述如下:

你可以通过下面的命令下载数据集到项目的resources目录下:

    $ cd my-flink-project/src/main/resources
    $ curl https://raw.githubusercontent.com/wuchong/my-flink-
    project/master/src/main/resources/UserBehavior.csv > UserBehavior.csv

这里是否使用curl命令下载数据并不重要,你也可以使用wget命令或者直接访问链接下载数据。关键是,将数据文件保存到项目的resources目录下,方便应用程序访问。

编写程序

在src/main/java/myflink下创建HotItems.java文件:

    package myflink;
    public class HotItems {
        public static void main(String[] args) throws Exception {
        }
    }

与上文一样,我们会一步步往里面填充代码。第一步仍然是创建一个StreamExecutionEnviron-ment,我们把它添加到main函数中。

    StreamExecutionEnvironment env =
    StreamExecutionEnvironment.getExecutionEnvironment();
    // 为了打印到控制台的结果不乱序,我们配置全局的并发为1,这里改变并发对结果正确性没有影响
    env.setParallelism(1);

创建模拟数据源

在数据准备章节,我们已经将测试的数据集下载到本地了。由于是一个csv文件,我们将使用CsvInputFormat创建模拟数据源。

注:虽然一个流式应用应该是一个一直运行着的程序,需要消费一个无限数据源。但是在本案例教程中,为了省去构建真实数据源的繁琐,我们使用了文件来模拟真实数据源,这并不影响下文要介绍的知识点。这也是一种本地验证Flink应用程序正确性的常用方式。

我们先创建一个UserBehavior的POJO类(所有成员变量声明成public便是POJO类),强类型化后能方便后续的处理。

    /** 用户行为数据结构 **/
    public static class UserBehavior {
        public long userId;        // 用户ID
        public long itemId;        // 商品ID
        public int categoryId;     // 商品类目ID
        public String behavior;    // 用户行为,包括("pv", "buy", "cart", "fav")
        public long timestamp;     // 行为发生的时间戳,单位秒
    }

接下来我们就可以创建一个PojoCsvInputFormat了,这是一个读取csv文件并将每一行转成指定POJO类型(在我们案例中是UserBehavior)的输入器。

    // UserBehavior.csv的本地文件路径
    URL fileUrl = HotItems2.class.getClassLoader().getResource("UserBehavior.csv");
    Path filePath = Path.fromLocalFile(new File(fileUrl.toURI()));
    // 抽取UserBehavior的TypeInformation,是一个PojoTypeInfo
    PojoTypeInfo<UserBehavior> pojoType = (PojoTypeInfo<UserBehavior>)
    TypeExtractor.createTypeInfo(UserBehavior.class);
    // 由于Java反射抽取出的字段顺序是不确定的,需要显式指定下文件中字段的顺序
    String[] fieldOrder = new String[]{"userId", "itemId", "categoryId", "behavior",
    "timestamp"};
    // 创建PojoCsvInputFormat
    PojoCsvInputFormat<UserBehavior> csvInput = new PojoCsvInputFormat<>(filePath,
    pojoType, fieldOrder);

下一步我们用PojoCsvInputFormat创建输入源。

    DataStream<UserBehavior> dataSource = env.createInput(csvInput, pojoType);

这就创建了一个UserBehavior类型的DataStream。

EventTime与Watermark

当我们说“统计过去一小时内点击量”,这里的“一小时”是指什么呢?在Flink中它可以是指ProcessingTime,也可以是EventTime,由用户决定。

· ProcessingTime:事件被处理的时间。也就是由机器的系统时间来决定。

· EventTime:事件发生的时间。一般就是数据本身携带的时间。

在本案例中,我们需要统计业务时间上的每小时的点击量,所以要基于EventTime来处理。那么如果让Flink按照我们想要的业务时间来处理呢?这里主要有两件事情要做。

第一件是告诉Flink我们现在按照EventTime模式进行处理,Flink默认使用ProcessingTime处理,所以我们要显式设置下。

    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

第二件事情是指定如何获得业务时间,以及生成Watermark。Watermark是用来追踪业务事件的概念,可以理解成EventTime世界中的时钟,用来指示当前处理到什么时刻的数据了。由于我们的数据源的数据已经经过整理,没有乱序,即事件的时间戳是单调递增的,所以可以将每条数据的业务时间就当做Watermark。这里我们用AscendingTimestampExtractor来实现时间戳的抽取和Watermark的生成。

    DataStream<UserBehavior> timedData = dataSource
        .assignTimestampsAndWatermarks(new AscendingTimestampExtractor<UserBehavior>()
    {
          @Override

注:真实业务场景一般都是存在乱序的,所以一般使用BoundedOutOfOrdernessTimestamp-Extractor。

          public long extractAscendingTimestamp(UserBehavior userBehavior) {
              // 原始数据单位秒,将其转成毫秒
              return userBehavior.timestamp * 1000;
          }
      });

这样我们就得到了一个带有时间标记的数据流了,后面就能做一些窗口的操作。

过滤出点击事件

在开始窗口操作之前,先回顾下需求“每隔5分钟输出过去一小时内点击量最多的前N个商品”。由于原始数据中存在点击、加购、购买、收藏各种行为的数据,但是我们只需要统计点击量,所以先使用FilterFunction将点击行为数据过滤出来。

    DataStream<UserBehavior> pvData = timedData
        .filter(new FilterFunction<UserBehavior>() {
          @Override
          public boolean filter(UserBehavior userBehavior) throws Exception {
              // 过滤出只有点击的数据
              return userBehavior.behavior.equals("pv");
          }
        });

窗口统计点击量

由于要每隔5分钟统计一次最近一小时每个商品的点击量,所以窗口大小是一小时,每隔5分钟滑动一次。即分别要统计[09:00, 10:00), [09:05, 10:05), [09:10, 10:10)...等窗口的商品点击量。是一个常见的滑动窗口需求(Sliding Window)。

    DataStream<ItemViewCount> windowedData = pvData
        .keyBy("itemId")
        .timeWindow(Time.minutes(60), Time.minutes(5))
        .aggregate(new CountAgg(), new WindowResultFunction());

我们使用.keyBy("itemId")对商品进行分组,使用.timeWindow(Time size, Time slide)对每个商品做滑动窗口(1小时窗口,5分钟滑动一次)。然后我们使用.aggregate(AggregateFunction af, WindowFunction wf) 做增量的聚合操作,它能使用AggregateFunction提前聚合掉数据,减少state的存储压力。较之.apply(WindowFunction wf)会将窗口中的数据都存储下来,最后一起计算要高效地多。aggregate()方法的第一个参数用于

这里的CountAgg实现了AggregateFunction接口,功能是统计窗口中的条数,即遇到一条数据就加一。

    /** COUNT统计的聚合函数实现,每出现一条记录加一 */
    public static class CountAgg implements AggregateFunction<UserBehavior, Long,
    Long> {
        @Override
        public Long createAccumulator() {
          return 0L;
        }
        @Override
        public Long add(UserBehavior userBehavior, Long acc) {
          return acc + 1;
        }
        @Override
        public Long getResult(Long acc) {
          return acc;
        }
        @Override
        public Long merge(Long acc1, Long acc2) {
          return acc1 + acc2;
        }
    }

.aggregate(AggregateFunction af, WindowFunction wf)的第二个参数WindowFunction将每个key每个窗口聚合后的结果带上其他信息进行输出。我们这里实现的WindowResultFunction将主键商品ID,窗口,点击量封装成了ItemViewCount进行输出。

    /** 用于输出窗口的结果 */
    public static class WindowResultFunction implements WindowFunction<Long,
    ItemViewCount, Tuple, TimeWindow> {
        @Override
        public void apply(
              Tuple key,  // 窗口的主键,即itemId
              TimeWindow window,  // 窗口
              Iterable<Long> aggregateResult, // 聚合函数的结果,即count值
              Collector<ItemViewCount> collector  // 输出类型为ItemViewCount
        ) throws Exception {
          Long itemId = ((Tuple1<Long>) key).f0;
          Long count = aggregateResult.iterator().next();
          collector.collect(ItemViewCount.of(itemId, window.getEnd(), count));
        }
    }
    /** 商品点击量(窗口操作的输出类型) */
    public static class ItemViewCount {
        public long itemId;    // 商品ID
        public long windowEnd;  // 窗口结束时间戳
        public long viewCount;  // 商品的点击量
        public static ItemViewCount of(long itemId, long windowEnd, long viewCount) {
          ItemViewCount result = new ItemViewCount();
          result.itemId = itemId;
          result.windowEnd = windowEnd;
          result.viewCount = viewCount;
          return result;
        }
    }

现在我们得到了每个商品在每个窗口的点击量的数据流。

TopN计算最热门商品

为了统计每个窗口下最热门的商品,我们需要再次按窗口进行分组,这里根据ItemViewCount中的windowEnd进行keyBy()操作。然后使用ProcessFunction实现一个自定义的TopN函数TopNHotItems来计算点击量排名前3名的商品,并将排名结果格式化成字符串,便于后续输出。

    DataStream<String> topItems = windowedData
        .keyBy("windowEnd")
        .process(new TopNHotItems(3));  // 求点击量前3名的商品

ProcessFunction是Flink提供的一个low-level API,用于实现更高级的功能。它主要提供了定时器timer的功能(支持EventTime或ProcessingTime)。本案例中我们将利用timer来判断何时收齐了某个window下所有商品的点击量数据。由于Watermark的进度是全局的,

在processElement方法中,每当收到一条数据(ItemViewCount),我们就注册一个windowEnd+1的定时器(Flink框架会自动忽略同一时间的重复注册)。windowEnd+1的定时器被触发时,意味着收到了windowEnd+1的Watermark,即收齐了该windowEnd下的所有商品窗口统计值。我们在onTimer()中处理将收集的所有商品及点击量进行排序,选出TopN,并将排名信息格式化成字符串后进行输出。

这里我们还使用了ListState<ItemViewCount>来存储收到的每条ItemViewCount消息,保证在发生故障时,状态数据的不丢失和一致性。ListState是Flink提供的类似Java List接口的State API,它集成了框架的checkpoint机制,自动做到了exactly-once的语义保证。

    /** 求某个窗口中前N名的热门点击商品,key为窗口时间戳,输出为TopN的结果字符串 */
    public static class TopNHotItems extends KeyedProcessFunction<Tuple,
    ItemViewCount, String> {
        private final int topSize;
      public TopNHotItems(int topSize) {
          this.topSize = topSize;
      }
      // 用于存储商品与点击数的状态,待收齐同一个窗口的数据后,再触发TopN计算
      private ListState<ItemViewCount> itemState;
      @Override
      public void open(Configuration parameters) throws Exception {
          super.open(parameters);
          // 状态的注册
          ListStateDescriptor<ItemViewCount> itemsStateDesc = new
  ListStateDescriptor<>(
                "itemState-state",
                ItemViewCount.class);
          itemState = getRuntimeContext().getListState(itemsStateDesc);
      }
      @Override
      public void processElement(
            ItemViewCount input,
            Context context,
            Collector<String> collector) throws Exception {
          // 每条数据都保存到状态中
          itemState.add(input);
          // 注册windowEnd+1 的EventTime Timer, 当触发时,说明收齐了属于windowEnd窗口的所
  有商品数据
          context.timerService().registerEventTimeTimer(input.windowEnd + 1);
      }
      @Override
      public void onTimer(
            long timestamp, OnTimerContext ctx, Collector<String> out) throws
  Exception {
          // 获取收到的所有商品点击量
          List<ItemViewCount> allItems = new ArrayList<>();
          for (ItemViewCount item : itemState.get()) {
            allItems.add(item);
          }
          // 提前清除状态中的数据,释放空间
          itemState.clear();
          // 按照点击量从大到小排序
          allItems.sort(new Comparator<ItemViewCount>() {
            @Override
            public int compare(ItemViewCount o1, ItemViewCount o2) {
                return (int) (o2.viewCount - o1.viewCount);
            }
          });
          // 将排名信息格式化成String, 便于打印
          StringBuilder result = new StringBuilder();
          result.append("====================================\n");
          result.append("时间: ").append(new Timestamp(timestamp-1)).append("\n");
          for (int i=0; i<topSize; i++) {
            ItemViewCount currentItem = allItems.get(i);
            // No1:  商品ID=12224  浏览量=2413
            result.append("No").append(i).append(":")
                  .append("  商品ID=").append(currentItem.itemId)
                  .append("  浏览量=").append(currentItem.viewCount)
                  .append("\n");
          }
          result.append("====================================\n\n");
          out.collect(result.toString());
      }
  }

打印输出

最后一步我们将结果打印输出到控制台,并调用env.execute执行任务。

    topItems.print();
    env.execute("Hot Items Job");

运行程序

直接运行main函数,就能看到不断输出的每个时间点的热门商品ID。

本文的完整代码可以通过GitHub访问到。本文通过实现一个“实时热门商品”的案例,学习和实践了Flink的多个核心概念和API用法。包括EventTime、Watermark的使用,State的使用,Window API的使用,以及TopN的实现。希望本文能加深大家对Flink的理解,帮助大家解决实战上遇到的问题。