第47章

  • Coral Reefs
  • 佚名
  • 1010字
  • 2016-03-02 16:28:37

Captain Moresby informs me that they are frequent, though not very strong, in the Chagos group, which occupies a very central position in the Indian Ocean, and is far from any land not of coral formation. One of the islands in this group was formerly covered by a bed of mould, which, after an earthquake, disappeared, and was believed by the residents to have been washed by the rain through the broken masses of underlying rock; the island was thus rendered unproductive. Chamisso (See Chamisso, in Kotzebue's "First Voyage," volume iii., pages 182 and 136.) states, that earthquakes are felt in the Marshall atolls, which are far from any high land, and likewise in the islands of the Caroline Archipelago. On one of the latter, namely Oulleay atoll, Admiral Lutke, as he had the kindness to inform me, observed several straight fissures about a foot in width, running for some hundred yards obliquely across the whole width of the reef. Fissures indicate a stretching of the earth's crust, and, therefore, probably changes in its level; but these coral-islands, which have been shaken and fissured, certainly have not been elevated, and, therefore, probably they have subsided. In the chapter on Keeling atoll, I attempted to show by direct evidence, that the island underwent a movement of subsidence, during the earthquakes lately felt there.

The facts stand thus;--there are many large tracts of ocean, without any high land, interspersed with reefs and islets, formed by the growth of those kinds of corals, which cannot live at great depths; and the existence of these reefs and low islets, in such numbers and at such distant points, is quite inexplicable, excepting on the theory, that the bases on which the reefs first became attached, slowly and successively sank beneath the level of the sea, whilst the corals continued to grow upwards. No positive facts are opposed to this view, and some general considerations render it probable. There is evidence of change in form, whether or not from subsidence, on some of these coral-islands; and there is evidence of subterranean disturbances beneath them. Will then the theory, to which we have thus been led, solve the curious problem,--what has given to each class of reef its peculiar form?

(PLATE: WOODCUT NO. 4.

AA--Outer edge of the reef at the level of the sea.

BB--Shores of the island.

A'A'--Outer edge of the reef, after its upward growth during a period of subsidence.

CC--The lagoon-channel between the reef and the shores of the now encircled land.

B'B'--The shores of the encircled island.

N.B.--In this, and the following woodcut, the subsidence of the land could only be represented by an apparent rise in the level of the sea.

PLATE: WOODCUT NO. 5.

A'A'--Outer edges of the barrier-reef at the level of the sea. The cocoa-nut trees represent coral-islets formed on the reef.

CC--The lagoon-channel.

B'B'--The shores of the island, generally formed of low alluvial land and of coral detritus from the lagoon-channel.

A"A"--The outer edges of the reef now forming an atoll.

C'--The lagoon of the newly formed atoll. According to the scale, the depth of the lagoon and of the lagoon-channel is exaggerated.)

Let us in imagination place within one of the subsiding areas, an island surrounded by a "fringing-reef,"--that kind, which alone offers no difficulty in the explanation of its origin. Let the unbroken lines and the oblique shading in the woodcut (No. 4) represent a vertical section through such an island; and the horizontal shading will represent the section of the reef. Now, as the island sinks down, either a few feet at a time or quite insensibly, we may safely infer from what we know of the conditions favourable to the growth of coral, that the living masses bathed by the surf on the margin of the reef, will soon regain the surface. The water, however, will encroach, little by little, on the shore, the island becoming lower and smaller, and the space between the edge of the reef and the beach proportionately broader. A section of the reef and island in this state, after a subsidence of several hundred feet, is given by the dotted lines: coral-islets are supposed to have been formed on the new reef, and a ship is anchored in the lagoon-channel. This section is in every respect that of an encircling barrier-reef; it is, in fact, a section taken (The section has been made from the chart given in the "Atlas of the Voyage of the 'Coquille'." The scale is .57 of an inch to a mile. The height of the island, according to M. Lesson, is 4,026 feet. The deepest part of the lagoon-channel is 162 feet; its depth is exaggerated in the woodcut for the sake of clearness.) east and west through the highest point of the encircled island of Bolabola; of which a plan is given in Plate I., Figure 5. The same section is more clearly shown in the following woodcut (No. 5) by the unbroken lines. The width of the reef, and its slope, both on the outer and inner side, will have been determined by the growing powers of the coral, under the conditions (for instance the force of the breakers and of the currents) to which it has been exposed; and the lagoon-channel will be deeper or shallower, in proportion to the growth of the delicately branched corals within the reef, and to the accumulation of sediment, relatively, also, to the rate of subsidence and the length of the intervening stationary periods.

It is evident in this section, that a line drawn perpendicularly down from the outer edge of the new reef to the foundation of solid rock, exceeds by as many feet as there have been feet of subsidence, that small limit of depth at which the effective polypifers can live--the corals having grown up, as the whole sank down, from a basis formed of other corals and their consolidated fragments. Thus the difficulty on this head, which before seemed so great, disappears.