会员
AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型
更新时间:2024-08-22 11:17:20 最新章节:封底
书籍简介
本书旨在帮助没有任何人工智能技术基础的工程师们全面掌握AIGC的底层技术原理,以及大语言模型、扩散模型和多模态模型的原理与实践。本书的核心价值是,首先为想学习各种大模型的读者打下坚实的技术基础,然后再根据自己的研究方向展开深入的学习,达到事半功倍的效果。通过阅读本书,您将学习如下内容:(1)AIGC技术基础深入了解神经网络的基础知识,包括卷积神经网络和循环神经网络的原理与应用。并通过学习神经网络的优化方法,您将掌握如何优化和提升神经网络的性能。(2)图像生成模型包括从自动编码器(AE)、变分自编码器(VAE)、生成对抗网络(GAN)等图像生成模型。通过学习优化方法,如WGAN、WGAN-WP、StyleGAN等,您将掌握如何提高图像生成模型的质量和稳定性。同时,了解图像生成模型的应用,如迁移学习、风格迁移等,让您轻松实现个性化创作。此外,还将带您深入了解DDPM、DDIM等扩散模型的前沿技术,为您展现图像生成技术的最新成果,探索更加出色的生成效果和表达方式。(3)语言生成模型了解注意力机制、Transformer架构等基础知识,深入探索GAT系列、大语言模型(如ChatGPT),让您掌握自然语言处理的精髓。(4)多模态模型了解CLIP、StableDiffusion、DALL.E等多模态模型,触碰视觉和文字的奇妙交织,领略多模态智能的广阔前景。
品牌:机械工业出版社
上架时间:2024-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
吴茂贵
同类热门书
最新上架
- 会员AI(ArtificialIntelligence,人工智能)是如何拥有创造力的?图像和文本生成如何做到以假乱真?什么是ChatGPT?人工智能的未来会怎样?这些问题都会在这个有趣的故事中被一一解答。本书讲述了AI公子为了在心爱的千金小姐的招亲大会中获胜而努力学习的幽默故事。本书讨论了AI与人类学习的相似性,结合AI公子的学习过程讲述ChatGPT核心技术的发展脉络。本书适合对ChatGPT感兴计算机2.9万字
- 会员AI大模型正成为数字经济时代的新质生产力,它将对经济社会的各行各业产生重大影响。本书详细介绍了AI大模型在各个领域的无限潜力和广阔前景。从精准农业的种植建议到智能制造的质量控制和精益生产,从医疗诊断的精准高效到文化传媒的智能化创新,从旅游业的个性化服务到教育领域的智能化辅助,从零售业的创新应用到交通运输业的智能化变革,AI大模型正在深度融入并引领各领域和行业的数字化转型。本书不仅提供全面的行业洞察计算机16.6万字
- 会员ChatGPT是当下最新、最热门的工具、效率工具,但为什么不同的人使用效果天差地别,整体上来说:一是认知上的不足;二是方法上的不足。这正是本书要解决的问题。本书不仅让读者会用ChatGPT,更尝试让读者意识到自己需要构建一个完整的学习体系,同时本书提供构建这个学习体系的方法。有了这个学习体系,才能真正用好ChatGPT,也不止能用好ChatGPT。读者能够根据自己的需求,用好ChatGPT,既不停计算机22.5万字
- 会员本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语计算机12.5万字
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基计算机13.4万字
- 会员内容简介这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心计算机16.9万字
- 会员本书主要介绍如何通过动态系统学习控制律,从而使机器人具备实时反应能力。本书首先介绍机器人学习数据的收集方法,然后重点讲解使用动态系统学习控制律的核心技术,使用动态系统进行轨迹规划的方法,以及使用动态系统进行柔性控制和力控制的方法。本书提供大量应用示例,包括机械臂、拟人手和仿人机器人的全身控制等。本书要求读者熟悉关于机器人控制的基础知识,并熟悉机器学习、统计、优化以及动态系统等相关内容,适合作为高等计算机20.3万字
同类书籍最近更新