
人工智能简史
更新时间:2019-03-27 14:24:38 最新章节:译者后记
书籍简介
人工智能会像200年前的电力那样颠覆世界吗?未来的机器人是否真的会像电影《Her》《机械姬》中那样具备高超的人类智慧,进而取代人类?奇点来临时,人类将何去何从?在《人工智能简史》一书中,人工智能时代的科技预言家、普利策奖得主约翰·马尔科夫将带领我们寻找答案。约翰·马尔科夫在他的重磅新作《人工智能简史》一书里,从多个维度描绘了人工智能从爆发到遭遇寒冬再到野蛮生长的发展历程,直击了工业机器人、救援机器人、无人驾驶汽车、语音助手Siri等前沿领域,进而深入探讨了人工智能(AI)与智能增强(IA)的密切关系,而马尔科夫也会剖析“人与机器谁将拥有未来”这一机器时代的核心伦理问题。《人工智能简史》是国内首套集权威、重磅、系统、实用于一体的“机器人与人工智能”书系之一!是迄今为止非常完整又具可读性的人工智能史著作。约翰·马尔科夫重新定位了人与机器的关系,是目前关于机器人与人工智能领域内非常具有力度的深思之作。
译者:郭雪
上架时间:2017-11-01 00:00:00
出版社:浙江人民出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
约翰·马尔科夫
最新上架
- 会员随着ChatGPT等人工智能和语言模型不断进步,了解这些技术的含义和潜在陷阱比以往任何时候都更加重要。作为享誉全球的跨技术和设计学科思想家,前田约翰利用他的丰富经验,为企业、产品设计师和决策者提供了可行的指导。通过深思熟虑和偶尔异想天开的例子,他构造了一个可以描述任何机器学习系统的关键功能的框架,并展望了可以如何使用它们来创造富有包容性和改变世界的产品。对任何想要深入了解机器如何“思考”以及未来可计算机9.6万字
- 会员本书通过实践案例操作,讲述AI绘画的生成步骤,展现了AI绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI绘画的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及Prompt、风格、技术细节、多模态交互、AIGC等一系列讲解。计算机5.5万字
- 会员《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字
- 会员《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。计算机13.9万字
- 会员《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字
- 会员Sora是一个文本生成视频工具,本书介绍了Sora在视频生成领域的巨大潜力。本书共9章,系统讲解人工智能的演进、Sora的应用实践、Sora深度解析、Sora的挑战与未来等。本书内容全面、图文并茂、经典易懂,适合想要学习Sora的初学者,以及想要学习文本生成文本、文本生成图片、文本生成视频等内容的人工智能爱好者、自媒体从业人员、短视频制作者、设计师、相关专业的企业和高校人员阅读。计算机3.2万字
- 会员本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字